
Agents: A Distributed Client/Server
System for Leaf Cell Generation

by

Dilvan de Abreu Moreira

A THESIS SUBMITTED TO

THE UNIVERSITY OF KENT AT CANTERBURY

IN THE SUBJECT OF ELECTRONIC ENGINEERING

FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

Canterbury - 1995



 ii

To the sheer pleasure of living.



 iii

The objective of computing is insight,

not numbers.

Richard Hamming.



 iv

Acknowledgments

I would like to thank all my friends at the Computer and Control Laboratory for pro-

viding encouragement and a very exciting work environment, especially to Evandro,

André, Germano, French and Mamdouh.

I am very thankful to all my good friends that supported me throughout this work,

especially Simona, Cezar, Ana, Isadora, Eduardo, Ana Raquel, Claudio, Luis, Mayrá,

Edmundo and Bani.

I also would like to thank my supervisor, Dr. Les Walczowski, for his supervision and

for the freedom he allowed me in conducting my work.

Finally, I would like to express my gratitude to my sponsor, the CNPq - National

Council for Research an agency of the Brazilian Federal Government, for the financial

support for this work.



 v

Abstract

The Agents system generates the mask level layout of full custom CMOS, BICMOS,

bipolar and mixed digital/analogue leaf cells. Leaf cells are subcircuits of a complexity

comparable with SSI (Small Scale Integration) components such as small adders,

counters or multiplexers. The system is formed by four server programs: the Placer,

Router, Database and Broker.

The Placer places components in a cell, the Router wires the circuits sent to it, the

Database keeps all the information that is dependent upon the fabrication process, such

as the design rules, and the Broker makes the services of the other servers available.

These servers communicate over a computer network using the TCP/IP Internet Proto-

col. The Placer server receives from its client the description and netlist of the circuit

to be generated using EDIF (Electronic Design Interchange Format). The output to its

client is the layout of the circuit (no virtual grid is used), again codified in EDIF.

The concept of agents as software components which have the ability to communicate

and cooperate with each other is at the heart of the Agents system. This concept is not

only used at the higher level, for the four servers Placer, Router, Broker and Database,

but as well at a lower level, inside the Router and Placer servers, where small rela-

tively simple agents work together to accomplish complex tasks. These small agents

are responsible for all the reasoning carried out by the two servers as they hold the

basic inference routines and the knowledge needed by the servers. The key concept is

that competence emerges out of the collective behaviour of a large number of rela-

tively simple agents. In addition and integrated with these small agents, the system

uses a genetic algorithm to improve components’ placement before routing.



 vi

Contents

Introduction .................................................................................1

1.1 The Agents system................................................................................2

1.2 Previous Work .......................................................................................4

1.2.1 Knowledge based systems......................................................... 4

1.2.2 Search intensive algorithms ....................................................... 5

1.3 Flexibility................................................................................................7

1.3.1 Object Oriented Programming.................................................... 8

1.3.2 Scalability ................................................................................... 8

1.3.3 Portability.................................................................................... 9

1.3.4 Ease of embedding................................................................... 10

1.4 Innovation............................................................................................10

1.5 Speed ..................................................................................................11

1.6 Main original contribution ....................................................................12

1.7 Structure of the work ...........................................................................12



 vii

Contents

Agents Object Oriented Structure ...........................................14

2.1 Introduction..........................................................................................14

2.2 Objects ................................................................................................16

2.3 Class ...................................................................................................18

2.4 Inheritance...........................................................................................19

2.4.1 Multiple inheritance................................................................... 21

2.5 Polymorphism......................................................................................22

2.6 Object Oriented Programming.............................................................23

2.6.1 Objects ..................................................................................... 24

2.6.2 Classes and instances.............................................................. 25

2.6.3 Inheritance between classes .................................................... 25

2.6.4 Polymorphism........................................................................... 26

2.7 Agents’ basic structure ........................................................................27

2.7.1 The Object class....................................................................... 28

2.7.2 Second hierarchical layer ......................................................... 30

2.7.3 The other layers........................................................................ 31

2.7.4 Design classes ......................................................................... 32

2.7.5 The Agents’ library organization ............................................... 33

Agent Objects ............................................................................35

3.1 Introduction..........................................................................................35

3.2 Search and problems spaces..............................................................36

3.2.1 The blocks world....................................................................... 38

3.3 Problem search versus embedded knowledge ...................................39

3.4 The problem-space computational model ...........................................41

3.4.1 Basics ....................................................................................... 41

3.4.2 A blocks world example............................................................ 43

3.4.3 Selecting values ....................................................................... 45

3.5 Distributed reasoning ..........................................................................46

3.5.1 The hive mind ........................................................................... 47

3.5.2 Defining behaviour systems ..................................................... 48



 viii

Contents

3.5.3 Insect-like robots ...................................................................... 48

3.6 Implementation of Agent Objects ........................................................51

3.6.1 Operation.................................................................................. 54

3.6.2 Distributed behaviour................................................................ 55

3.7 Why use the class Agent reasoning model? .......................................56

Agent Servers ............................................................................59

4.1 Introduction..........................................................................................59

4.2 Client/Server Model.............................................................................60

4.3 Software agents ..................................................................................61

4.3.1 Communication......................................................................... 62

4.3.2 The router and placer servers .................................................. 63

4.4 The Squeme language ........................................................................64

4.4.1 The process DataBase server .................................................. 65

4.5 Architecture of multi-agent systems ....................................................67

4.5.1 The Knowledge Query and Manipulation Language ................ 68

4.5.2 The Broker server..................................................................... 69

4.5.3 Development phase servers..................................................... 72

Genetic Algorithm .....................................................................74

5.1 Introduction..........................................................................................74

5.2 Optimization techniques ......................................................................75

5.3 The algorithm ......................................................................................77

5.3.1 Crossover ................................................................................. 79

5.3.2 Mutation.................................................................................... 80

5.3.3 Problem dependent parameters ............................................... 81

5.3.4 Encoding................................................................................... 81

5.3.5 The evaluation step .................................................................. 82

5.3.6 Implementation ......................................................................... 82



 ix

Contents

Placement ..................................................................................84

6.1 Introduction..........................................................................................84

6.2 The EDIF description...........................................................................85

6.3 Column formation ................................................................................87

6.4 Group formation ..................................................................................89

6.5 The genetic algorithm placement ........................................................92

6.5.1 Encoding................................................................................... 93

6.5.2 Genetic operations ................................................................... 96

6.5.3 Evaluation................................................................................. 99

6.5.4 Classification ............................................................................ 99

6.5.5 The algorithm implementation ................................................ 102

6.6 The placement routing cycle .............................................................103

Routing .....................................................................................106

7.1 Introduction........................................................................................106

7.2 The CAD role.....................................................................................107

7.2.1 Retrieve methods ................................................................... 108

7.2.2 Building methods .....................................................................111

7.3 The Designer role..............................................................................113

7.4 Router expert.....................................................................................115

7.4.1 Connect in same layer............................................................ 115

7.4.2 Diffusion to metal openings .................................................... 116

7.4.3 Main connections.................................................................... 116

7.4.4 Connecting a subnet............................................................... 117

7.4.5 The algorithm.......................................................................... 119

7.4.6 Rewiring.................................................................................. 122

7.5 Connection object agent....................................................................125

7.5.1 The Connect agent operators................................................. 125

7.5.2 The Change Direction operator .............................................. 127

7.5.3 The general operation ............................................................ 130



 x

Contents

Results .....................................................................................132

8.1 Introduction........................................................................................132

8.2 The BICMOS nand gate example .....................................................133

8.3 The CMOS D latch example..............................................................137

8.4 Running distributed and scalability....................................................140

8.5 Flexibility............................................................................................143

Conclusion ...............................................................................145

9.1 Overview ...........................................................................................145

9.1.1 Flexibility................................................................................. 145

9.1.2 Innovation ............................................................................... 146

9.1.3 Speed ..................................................................................... 147

9.2 Development opportunities................................................................147

9.3 Future research .................................................................................148

References ...............................................................................151



 xi

List of Figures

Figure 2.1: Semantic gap............................................................................ 15

Figure 2.2: The outside world view of an object. ........................................ 17

Figure 2.3: Instances of class Man. ............................................................ 20

Figure 2.4: Classes inheritance. ................................................................. 21

Figure 2.5: Agents basic classes. ............................................................... 29

Figure 2.6: Components classes. ............................................................... 32

Figure 2.7: Agent’s libraries files hierarchy. ................................................ 34

Figure 3.1: A problem space....................................................................... 38

Figure 3.2: Preparation versus deliberation trade-off. ................................ 40

Figure 3.3: Flowchart of the problem space computational model. ............ 42

Figure 3.4: Solving a blocks world problem. ............................................... 44

Figure 3.5: Layers of a behaviour hierarchy. .............................................. 50

Figure 3.6: Agent’s structure....................................................................... 51

Figure 3.7: The decision cycle .................................................................... 54

Figure 3.8: Agents as a more complete solution. ....................................... 57



 xii

List  of  Figures

Figure 4.1: Heterogeneous network. .......................................................... 61

Figure 4.2: Window of the Database server................................................ 66

Figure 4.3: The negotiation between a client and the Broker. .................... 71

Figure 4.4: Broker agent server window. .................................................... 72

Figure 4.5: Graphic server’s window........................................................... 73

Figure 5.1: Classes of search techniques................................................... 75

Figure 5.2: The “reproduction” cycle........................................................... 78

Figure 5.3: Crossover. ................................................................................ 79

Figure 5.4: Mutation.................................................................................... 80

Figure 6.1: Types of cells used by the Placer server. server. ..................... 88

Figure 6.2: Column formation process........................................................ 90

Figure 6.3: The grouping process............................................................... 92

Figure 6.4: Types of cell groups.................................................................. 93

Figure 6.5: Coding schema......................................................................... 94

Figure 6.6: Actual circuit placement............................................................ 96

Figure 6.7: Crossover in lists. ..................................................................... 97

Figure 6.8: Correction of groups’ placement............................................... 98

Figure 6.9: Wiring estimation method. ...................................................... 100

Figure 6.10: Distribution of reproduction and death probabilities. .............. 101

Figure 6.11: The “reproduction” cycle......................................................... 102

Figure 6.12: Placement/routing cycle. ........................................................ 104

Figure 6.13: A placed/wired design ready to be sent back to a client......... 105

Figure 7.1: The Designer/CAD metaphor. ................................................ 107

Figure 7.2: Crash and touch events.......................................................... 108

Figure 7.3: A crash pointer........................................................................ 109

Figure 7.4: A touch pointer........................................................................ 110

Figure 7.5: Envelopes and closest wiring points........................................111

Figure 7.6: Method for changing layers. ................................................... 112

Figure 7.7: The basic maze routing. ......................................................... 114



 xiii

List  of  Figures

Figure 7.8: Interesting points. ................................................................... 115

Figure 7.9: Circuit after straight diffusion and polysilicon connections. .... 117

Figure 7.10: Connect agents probing interesting points. ............................ 118

Figure 7.11: RouterExpert agent data structure. ........................................ 119

Figure 7.12: Algorithm used by the connectSubnet method....................... 121

Figure 7.12: Possible error using partial rewiring. ...................................... 124

Figure 7.13: Operators Goto XY and Go Round. .......................................... 126

Figure 7.14: Operator Change Direction in action. ..................................... 128

Figure 7.15: Change Direction operator touch blocked cases.................... 129

Figure 7.16: Completely routed circuit. ....................................................... 131

Figure 8.1: The BICMOS nand gate circuit............................................... 133

Figure 8.2: BICMOS nmos gate handmade layout. .................................. 134

Figure 8.3: First generated layout for the BICMOS nand gate. ................ 135

Figure 8.4: Second generated layout for the BICMOS nand gate. ........... 136

Figure 8.5: The D latch circuit................................................................... 137

Figure 8.6: Latch symbolic layout. ............................................................ 138

Figure 8.7: Two generated layouts for the CMOS D latch circuit.............. 139

Figure 8.8: BICMOS nand gate with a pull-up resistor.............................. 142

Figure 8.9: Generated layout of the nand gate with pull-up resistor. ........ 142

Figure 8.10: CMOS D latch with central power lines. ................................. 143



 xiv

List of Tables

Table 3.1: Rules’ names code ................................................................... 53

Table 4.1: Placer and Router non-EDIF commands.................................. 63

Table 4.2: Possible queries to a Database server. .................................... 67

Table 4.3: Default message parameters. .................................................. 69

Table 4.4: KQML communication types..................................................... 69

Table 8.1: Agents system execution times. ............................................. 141



 1

1 Introduction

Custom integrated circuit design is normally based on a hierarchical specification

structure. High-level modules are composed of submodules, which are formed by

smaller submodules, and so on. At the end of this tree-like structure are modules

formed only with transistors. These modules are called leaf cells. They are subcircuits

of a complexity comparable with SSI (Small Scale Integration) components such as

one-bit adders, flip-flops or multiplexers.

The traditional way of creating the layout of ASIC (Application Specific Integrated

Circuit) custom chips requires a human designer to interact with a CAD (Computer

Aided Design) layout program. It uses a cell based layout methodology. This

methodology is good for ASIC designs because the layout process (mainly placement

and routing) can be automated to a large extent, making the turn-around time shorter

and manufacturing reliability high.



 2

Chapter 1 Introduct ion

A major drawback of this methodology lies in the design and maintenance of the cell

libraries for every upgrade of the manufacturing processes. Additionally, as the

number and the variations of cells are both limited, some required cells may not exist

in the libraries. Circuit performance will then have to be sacrificed [10].

As manual layout is a slow and expensive process, due to the large amount of detail

that has to be handled, automatic physical design generation tools have obvious

advantages. If they are capable of generating layout for a great range of SSI circuits for

different manufacturing process, they can take the place of cell libraries. As they

would produce leaf cells that would fit exactly the design needs and be process

independent, they would address the two drawbacks of the cell based methodology.

1.1 The Agents system

The Agents system is a set of programs designed to automatically generate full cus-

tom CMOS, BICMOS, bipolar and mixed digital/analogue leaf cells’ layout. The sys-

tem is formed by four server programs: the Placer, Router, Database and Broker.

The Placer places components in a cell and uses the Router to wire them; the Router

wires the circuits sent to it; the Database keeps all the information that is dependent

upon the fabrication process, such as the design rules, and the Broker makes the serv-

ices of the other servers available and manages the available resources, in this case the

servers, to meet the demands of their clients.

These servers communicate over a computer network using TCP/IP Internet Protocol

[52]. The Placer server receives from its client, via the network, the description and

netlist of the circuit to be generated using EDIF (Electronic Design Interchange For-

mat) [55]. EDIF was chosen because it is a standard language used to represent elec-

tronic designs widely used in commercial CAD tools. Furthermore, because EDIF is a

Lisp-like language, it is easy and fast to parse and extend. After finishing, the Placer

uses EDIF again to output the layout of the circuit to its client.



 3

Chapter 1 Introduct ion

The output layout is not virtual grid based, it is a real layout. The system does not use

a virtual grid system either for placement or routing, all operations are performed on

mask layout. The Agents system is very flexible in relation to the chip technologies it

can handle, they include CMOS, BICMOS and bipolar. In addition, it can handle small

analogue cells inside digital designs.

In the literature, agents are defined as software components that communicate with

their peers by exchanging messages in a communication language [31]. They are char-

acterized by their ability to communicate and cooperate with each other. The four serv-

ers, that form the Agents system, are agents that can run in parallel on different

machines to solve cooperatively a placement-routing problem. They were imple-

mented as a distributed system using a client/server model to enhance flexibility, port-

ability and exploit parallelism.

The concept of agents as software components is at the heart of the Agents system, for

this reason they even lend their name to the system. The concept is not only used at the

higher level, in the four servers Placer, Router, Broker and Database. It is also used at

a lower level, inside the Router and Placer servers, where small relatively simple

agents work together to accomplish complex tasks. These small agents are responsible

for all the reasoning done by the two servers. They hold the basic inference routines

and the particular knowledge needed for a particular application. They employ a rea-

soning model based on Goals, Problem Spaces, States and Operators. This design phi-

losophy is that competence should emerge out of the collective behaviour of a large

number of relatively simple agents.

In addition and integrated to the small agents inference machines, the system uses the

genetic algorithm for the placement optimization task. Genetic algorithms are a class

of computational model that mimic natural evolution to solve problems in a wide vari-

ety of domains [65]. Genetic algorithms are particularly suitable for solving complex

optimization problems and for applications that require adaptive problem solving

strategies. They are used by the Agents system to improve components placement

before routing.



 4

Chapter 1 Introduct ion

The major aim of the system is to integrate all its parts and technologies in a way that

the best of each can be exploited. It tries to be ready to exploit future trends in comput-

ing, such as the spread of parallel machines, and to offer an innovative solution for the

layout generation problem.

1.2 Previous Work

Much work has been done to automate layout generation. The following is a brief

description of some of this work, divided in two groups: Knowledge based systems

(basically rule based systems) and systems based on intensive search algorithms, such

as Lee’s algorithm, simulated annealing or simulated evolution.

1.2.1 Knowledge based systems

Design systems in this group use mainly heuristic expert knowledge, in the form of

production rules, to guide their search in finding solutions for the layout problem.

They may use algorithmic solutions for some small tasks, but it is the knowledge sys-

tem that is in charge of the overall behaviour of the system.

• Talib [1] is a ruled based NMOS module compiler with more than 2100 rules. It

treats algorithmic-based procedures as subtasks while supervising them with a

knowledge-based control system. Talib relies on its control knowledge to decide

when and how to perform a specific subtask properly. Talib demonstrates how to use

clusters of circuits with known layouts to complete an NMOS cell layout, and how

to take input boundary conditions into account. Most of Talib’s design knowledge is

based on empirical rules used by human experts when working in design examples.

Talib is able to generate a compact layout for small circuits, and its rule based

approach makes it easy to add new knowledge.

• Topologizer [2] is a ruled-based CMOS layout generator. It uses rules specified by

an expert designer to produce a symbolic layout from the descriptions of the transis-

tor connections and the environment in which the cell resides. The placement rules



 5

Chapter 1 Introduct ion

include moving transistors between locations, exchanging their positions, and rotat-

ing them. The routing expert consists of a prerouter and a refinement router. The

prerouter produces “rough routing” by assigning a unique track to each pair of ter-

minals to be connected. The refinement router then improves the rough routing by

applying a set of rules to eliminate bad routing, like U-turns elimination, row shar-

ing, etc. The output from Topologizer is a symbolic file of CMOS layout. By using

MULGA, a symbolic layout system [3], Topologizer’s outputs can be translated into

a mask layout.

• LES (Layout Expert System) [4] is a random logic module layout generator targeted

for one-metal polysilicon gate CMOS technology, in hierarchical VLSI designs. It

applies rules and algorithms based on a multi-row layout style. LES takes a top-

down strategy that generates leaf cells after, rather than before, placement and glo-

bal routing are done. No detailed routing is needed because the cells are laid to fit

their environment. LES consists of seven expert systems organized in a blackboard

architecture: Analyses, Architecture, Placement, Characterization, Layout, Evalua-

tion and Optimization experts.

• AREAL (Automated Reasoning Expert for Analogue Design) [5] is a system for

generation of analogue layout circuits. It uses knowledge and geometric reasoning

to prune the design space. It express topological and geometric constraints, deduced

form analogue and connectivity information, in the form of boolean relations. This

constraints are preserved and imposed throughout the solution using a boolean-con-

straint-solver to reduce the design space. This space is then explored by a controlled

branch-and-bound process to find an optimal solution.

1.2.2 Search intensive algorithms

Design systems in this group use mainly algorithmic techniques, such as Lee’s algo-

rithm, simulated annealing or simulated evolution, to guide their search in finding

solutions for the layout problem. They may have some rules embedded in them, but

the knowledge in these rules is secondary to the overall task of the system.



 6

Chapter 1 Introduct ion

• The PI (Placement and Interconnect) System [6] is a placement and interconnect

system for custom NMOS or CMOS (single metal layer) designs. The system basi-

cally places circuit cells and assigns routing channels, it is not a leaf cell generator.

The cells’ placement is done using heuristics that take in consideration the connec-

tivity among neighbouring cells and in relation to the power grid. PI relies on chan-

nel router programs [7] to do its routing. The program will assign the channels and

decide their dimensions and the channel routers will do the detailed routing. The

program is written in LISP.

• ESP (Evolution based Standard cell Placement) [8] is a program package designed

to perform standard cell placement including macro-block placement capabilities. It

uses the method of simulating an evolutionary process in order to minimize the cell

interconnection wire length. While archiving comparable results to popular Simu-

lated Annealing algorithms, ESP usually requires less CPU time.

• Excellerator [9] is a program which generates CMOS cell layouts from a circuit’s

specification. The program generates CMOS layout that is “gate-matrix-like”, but

not constrained by strict “gate-matrix” design rules. It supports different layout

shapes and port locations constraints. Multi-row transistor placement is undertaken

by identifying groups of serially connected transistors, and then positioning and

ordering the groups. A routing technique based on a recursive version of the A-star

search algorithm is used. Routing priority can be given to critical nets.

• LiB [10] [74] uses a branch-and-bound search strategy to find an optimal chaining

of transistors. It folds large transistors into multiple columns to meet the cell height

constraint. The whole cell is divided into five routing regions: Two regions are in

the diffusion islands (the PMOS and NMOS diffusion rows), and the other three are

rectilinear shaped routing channels (between the power rail and PMOS row,

between the PMOS and NMOS diffusion rows, and between the NMOS diffusion

row and the ground rail). The program uses a graph theoretical method to select nets

(subnets) for routing in the diffusion island. A global routing algorithm assigns the



 7

Chapter 1 Introduct ion

remaining nets to the three rectilinear channels. For the detailed routing, SILK [11],

a router based on a simulated evolution algorithm, is used.

• PROCORE (PRObabilistic COnflict REsolver) [12] is a system based on simulated

annealing optimization techniques. Simulated annealing is used to provide a frame-

work for controlling ripup and reroute transformations within an implementation of

Lee’s algorithm. Intersections between nets are removed individually by rerouting

one net (selected randomly) involved in an intersection such that it does not cross

the other intersecting net (crossing other nets is still permitted). The resulting trans-

formation is then either accepted or rejected based on the evaluation of a global cost

function.

1.3 Flexibility

The three key issues affecting the decisions taken during the design of the Agents sys-

tem were flexibility, innovation and speed. It was decided that the first two, flexibility

and innovation, were going to be more important than speed. The Agents system does

not aim for high speed and does not attempt to be particularly fast.

What differentiates the Agents system from previous ones is its emphasis on a flexible

design, that can offer more freedom of design, and its use of new ideas, such as the

concept of agents as software components. The system tests new trends and concepts

in computing to discover how they can be used in layout generation.

Nowadays flexibility is becoming more important than speed, as machines get faster

and greater flexibility in use, upgrade, or setup, becomes more important than speed.

Flexibility is achieved at performance level using scalability (the quality of a program

to adapt to the resources of the hardware it is running on can offer), and at integration

level by being a system which is portable and easy to integrate. More important, flexi-

bility is delivered to the user as a richer set of layout options, the Agents system can

take BICMOS and CMOS technologies, can mix small analogue cells with a digital

design and it has fabrication process independence.



 8

Chapter 1 Introduct ion

1.3.1 Object Oriented Programming

Object oriented programming (OOP) techniques are well suited for system modelling.

Systems, based on an object-oriented approach, are easier to understand because they

are more closely related to reality. They have a small semantic gap between the model

and reality. OOP makes the systems more flexible because the program can be broken

up into many small and independent entities (objects) that can be refined and evolved

independently [13]. Because of this independence they can be used later in other simi-

lar designs, improving code reuse [22].

1.3.2 Scalability

An important trend in the computer industry today is for system architectures that are

fully scalable, that is, when the number of processors in a system is increased, system

performance should scale up proportionally [14]. The DEC’s Alpha, Motorola’s

Power-PC and Intel’s Pentium architectures, the more important new microprocessors’

architectures, are all scalable [14] [15].

For software, scalability basically means that a program should adapt to take advan-

tage of the computational resources available. Such a program would run in no more

than the humble resources a PC computer can offer, but if more power is made availa-

ble, for example by adding to the setup a Sun Sparc workstation, this program would

use the extra resources to improve performance.

In the Agents system, scalability is achieved mainly by the use of the client-server

model. In this model the server program provides a service that the client program

requests and they communicate over a network. If only one modest computer is avail-

able all servers and clients will run slowly on it. If a more powerful computer is avail-

able, the entities can run faster and be in a greater number. If many computers of many

types are available connected by a network, many servers and clients can work in par-

allel using all power the computer network can give to improve performance.



 9

Chapter 1 Introduct ion

That scalability of performance, depending on how much computer power is available,

leads to a scalability of application. One can trade design quality with response time.

One can tune the computer power made available to the program, based on how much

of these two variables is needed. If high design quality is not needed or a slow

response time is tolerable, a small amount of computer resource can be made available

for the application. If, on the other hand, one needs the best quality as fast as possible,

a large amount of computing power will deliver the expected results.

Design quality is defined in terms of the area a layout occupy, the length of its wires

and the number of vias it uses. The smaller the occupied area, wire length and number

of vias, the better the design quality.

1.3.3 Portability

Portability measures how easy it is to port a program to a new environment, which

could be a new operational system or a new processor architecture. To achieve high

portability the Agents system employs three strategies:

• The program is written in C++, a very popular and widely available language.

• It was concurrently developed on three operational systems of the Unix family:

SunOs 4.X, Solaris2.X and Linux 1.X. And on two different computer architec-

tures: The Sun SparcStations and the Intel 386 family. This avoided operational sys-

tem or hardware dependencies being built inside the program.

• Two different C++ compilers were used: The SunSoft C++ and the GNU g++. The

SunSoft compiler offered compatibility with AT&T C++ 3.0, the de facto standard

for C++. GNU g++ is available on a wide range of platforms, from Cray super-com-

puters to Comodore Amigas. Compiling with both gave the program both qualities

at the same time. It helped, as well, to solve compiler bugs (it is very unlikely that

the same bug would plague two different compilers) and to avoid the use of com-

piler dependent features.



 10

Chapter 1 Introduct ion

1.3.4 Ease of embedding

This system is easy to embed in other systems because it uses a combination of client-

server communication with a standard circuit description language (EDIF).

A server can be seen as a black box that has a contact port where you can send com-

mands and receive results. The way to access this port is standard (in this case the

standard is the TCP/IP protocol).

In the Agents system, to ease the process further, this port accepts data in ASCII for-

mat and the circuit descriptions are in EDIF (a standard circuit description language).

The only thing a programmer, trying to embed Agents as part of his or her own sys-

tem, needs to know apart from the standards are the commands accepted by the server.

These commands are few and simple and follow the same syntax as EDIF commands.

The more a program is easy to port to and embed in another systems, the greater are

the chances it will be actually used. There is no point in writing a very good program

that nobody will use.

1.4 Innovation

The main conceptual innovation brought into the Agents system is the agents concept

itself, the division of the system into smaller entities that can work independently, but

together, to solve cooperatively a placement-routing problem. One of the advantages

of such a division is that it can better exploit the kind of parallelism available in a cli-

ent/server system working over a network. In such systems there is a relatively small

number of powerful processors, in comparison to the massive amount of processors

found in big parallel computers, this makes it more suitable for running independent

medium size programs in opposition to a large number of very small ones.

The agents concept was used in Agents at two levels: at the system level, the four

servers, that form the system, can run in parallel on different machines, and at a pro-



 11

Chapter 1 Introduct ion

gram level, where agent objects are used. Agent objects are objects with an expert sys-

tem embedded in them. They are in charge of control and coordination tasks inside the

program.

At program level, the agent objects innovate because they are small expert systems

acting independently in opposition to the more common solution of having a big mon-

olithic expert system with thousands of rules. Complex behaviour comes from the

interaction of the small expert systems and not from a bulk set of rules.

Another innovative solution is the use of the genetic algorithm for layout optimization.

Genetic algorithms have emerged, in the last few years, as practical, robust optimiza-

tion and search methods. They use mutation and cross-over as search mechanisms and

selection to direct the search towards the prospective target in the search space [17]. In

Agents a routine based on the genetic algorithm is used to improve the quality of the

component placement.

1.5 Speed

The Agents system has 18400 lines of C++ and Lisp (Squeme) code. It is a reasonably

big program for one person to code. To reduce the program’s complexity, and thus

make it manageable by just one coder, some compromises had to be made. During the

program’s design, whenever such a compromise had to be made, flexibility and inno-

vation were protected at the expense of speed. This is in tune with the decision to con-

sider flexibility and innovation more important issues than speed during the program’s

design.

During the time it takes to write any big program, some years, the available hardware

will probably double its power. If one aims mainly for speed one runs the risk of being

overtaken by the natural rate of improvement of hardware performance. At the end,

one can have a program that goes faster, but other well established more flexible pro-

grams running on new hardware may run fast enough to make the switching for a new



 12

Chapter 1 Introduct ion

program not interesting. Usually it makes more sense to have new machines twice as

fast than to upgrade to a different program that would run things in half the time.

In addition, as scalability is one of the goals of the Agents system, if speed is really an

issue, when using this program for some particular application, its scalability will

allow speed increases by making more computer power available. In this case, more

hardware will buy the necessary extra speed.

1.6 Main original contribution

The Agents system [18] [19] aims to demonstrate that software agents can be used to

generate flexible VLSI layout. Such a system can show that VLSI layout generation

can be distributed over a network of computer to take advantage of the available com-

puter power to generate good layout faster. Agents can show that, by using a client/

server model, layout generation tools can adapt to the trend in mainstream computing

towards networks of relatively low-cost workstations (in opposition to big isolated

computers).

1.7 Structure of the work

The following chapters explore and discuss the Agents system in detail. They begin

exploring the key technologies used in the system:

• Chapter 2 introduces the concept of object oriented programming and shows the

basic class structure of the system.

• Chapter 3 presents the concept of software agents and the problem-space computa-

tional model. It explores the idea of distributed reasoning and how the Agents sys-

tem implements small software agents.



 13

Chapter 1 Introduct ion

• Chapter 4 discusses the client/server model and how big software agents can be

implemented as servers over a network. The Broker and Database servers are dis-

cussed.

• Chapter 5 discusses layout optimization techniques and introduces the genetic algo-

rithm.

After the key technologies have been explored the next three chapters present the core

implementation of the system:

• Chapter 6 shows how the placement server (Placer) is implemented.

• Chapter 7 shows how the routing server (Router) is implemented.

• Chapter 8 presents and analyses some results obtained using the system.

Finally a conclusion chapter summarizes the work and presents some ideas about

future research.



 14

2 Agents
Object
Oriented
Structure

2.1 Introduction

Object orientation is a technique well suited for system modelling. The word system

here has a wide meaning, being either a dedicated software system or any organiza-

tional system (such as a company or a football team). Using object-orientation as a

base, one can model the system as a number of objects that interact [20]. Hence, irre-

spective of the type of system being modelled, one regards its contents as a number of

objects which in one way or another are related.

The world around us can be seen as objects, such as people, houses, cars which are in

many ways related to each other. What the objects model depends on what one intends

to represent. A model of our world can be represented equally well by loan, credit,

stock and share objects, if one is interested in financial markets. The objects chosen

will then be dependent on what the object model is intended to represent.

People tend to think about the world in terms of objects, and therefore it is simpler for

them to do the same when representing a data model. Such a model, based on an



 15

Chapter 2 Agents Object  Or iented Structure

object-oriented approach, is easier to understand because it is more closely related to

reality. Such a design method will have a small semantic gap between the model and

reality, as shown on figure 2.1. On the top of the figure are the real life objects, with

many attributes, such as colour, size, functionality, and at the bottom the data structure

that captures only the real life objects’ characteristics and relationships relevant to a

certain computational task. The semantic gap is the difference between how com-

pletely a model represents reality and reality itself. The closer the object oriented

model is related with reality, the smaller the semantic gap.

Reality

Model

Semantic

Gap

uses

drives Computer Telephone

Car

Mary

Figure 2.1: Semantic gap.



 16

Chapter 2 Agents Object  Or iented Structure

The smaller the gap, the easier the system is to understand and modify. Modifications

will tend to be local, affecting one or few individual items, which are represented by

code isolated in objects.

2.2 Objects

The object is the most important concept in this chapter. The word object is used in

nearly all contexts. What the concept means here is an entity able to save a state (infor-

mation) and which offers a number of operations (behaviours) to either examine or

affect this state.

In an object oriented model, the components of the modelled system are represented

by a number of objects. These objects usually correspond to real life entities, such as a

share, an invoice, or a customer.

One can associate information (states) and operations (behaviours) to each object. For

instance, an Invoice object can hold information such as the name of the company to

be invoiced, the invoice value or tax deductions. It can have a set of operations to

modify this information and to perform behaviours such as billing the customer

account or warning that a bill is overdue. The only part of an object accessible from

the outside should be its operations, its inside should be hidden from the outside

world. Outside objects just use those operations, they can not see how they work (fig.

2.2). Only when one looks inside an object, can a person see how it implements its

operations.

Amongst the information an object holds are any associations with other objects. For

example, the Invoice object may hold a Person object to represent the customer.

The model’s objects have relations with each other. A family, for instance, can be rep-

resented as an object, called Family, that holds a grouping of objects called Man,

Woman and Child, that have the relationship of belonging to the same family. The

object Family represents this particular aggregate, but it is not the aggregate itself. An

aggregate is a union of several objects, and such an union can often be represented by



 17

Chapter 2 Agents Object  Or iented Structure

an object of its own. For instance, the object Football Team can be built to hold

twelve objects of type Man, and to express the particular relationship these twelve men

have to each other. This relationship can be expressed in various forms, such as the

group behaviour of playing football.

The internal workings of any object are only available when someone looks into them.

This includes their information structure, their constituent parts and how the behaviour

for the operations is defined.

The dynamics in an object oriented model are created by means of stimuli to or from

other objects. A stimulus is the event when an object communicates with another

object. In a programming context, the word message is used. An object sends mes-

sages to other objects, and has operations triggered by messages sent from them.

These operations can in turn cause new messages to be sent. For example, if the object

Invoice is required to bill the customer it will receive a stimulus that will trigger this

behaviour, if Invoice is written in a language that implements message passing (such

as Smalltalk) this stimulus will be a message. Complicated behaviours will fire many

Get Customer Name

Bill account

etc....

Type Invoice

An Invoice Object

Operations

Figure 2.2: The outside world view of an object.



 18

Chapter 2 Agents Object  Or iented Structure

stimuli between many objects. If we send the message play to the object Football

Team it will send many messages to each object Man, which in turn will send many

messages between themselves and to other objects outside Football Team.

All information in an object oriented system is stored inside objects and can only be

modified when objects receive messages to do so. The behaviour and information are

encapsulated in the objects. Objects support the concept of information hiding, they

hide their internal structure from outsiders. To use an object one only needs to know

which operations it offers. For example, if a object oriented graphics library is used by

an object oriented application the routines in the library can be changed at will. The

application program code will not be affected provided that the messages that the

library accepts are still the same. Encapsulation insures that the application writers do

not know anything about the library implementation and thus can not write implemen-

tation dependent code. Encapsulation means that all that can be seen of an object is its

interface (the operations it can perform).

These concepts have their roots in abstract data types. They are structures with a

number of operations that affect them. Both, objects and abstract data types, are

abstractions and are defined in terms of what they do, not how they do it. One of the

advantages is that one should be able to use them independently of their implementa-

tion. This means that even if the implementation is modified, it shouldn’t be necessary

to change the way the abstract data types are used. Another advantage is the reduction

in complexity as the users have no possibility of becoming involved in the objects

internal affairs but should only have the ability to use them according to their specifi-

cations.

2.3 Class

Objects in a system will share common characteristics and it will be possible to group

them accordingly. Looking at the object Football Team, one can see that its objects

(the eleven players) share similar behaviours and structure. All can jump, talk, kick,



 19

Chapter 2 Agents Object  Or iented Structure

etc. These objects have the same mould or template. Such a group represents a class.

In Jacobson [20] a class is a definition, a template or a mould to enable the creation of

new objects and is, therefore, a description of the common characteristics of several

objects.

Using the concept of class, characteristics can be associated with a whole group of

objects. A class can then be described as an abstraction that describes all the common

characteristics of the objects forming part of it.

An object that belongs to a class is called an instance of that class. The players in the

object Football Team are instances of the class Man (fig. 2.4). The information

structure and behaviour of an object is defined by its class, but each instance has a

unique identity. Different instances can receive different sequences of stimuli and, as a

result, have different internal states.

All players are instances of the same class Man, and therefore will have the same

behaviour. If one wishes to create a female football team and describe the fact that men

and women have different behaviour, another class, Woman, has to be created. For this

new class, behaviour and structure should be described, and a lot of this information

will be just a repetition from the description of the class Man. Elements such as name

or age are the same for the two classes.

2.4 Inheritance

As stated earlier, if the two classes Man and Woman are compared they will have a lot

of common information. This common information can be shared by the classes by

extracting them and putting them in another class. In this new class called Person,

everything that is common to Man and Woman is described, in this way common char-

acteristics can be shared by many classes. All the common characteristics are collected

under one specific class and the original classes (in this case Man and Woman) inherit

from it. As they inherit the common characteristics, Man and Woman only need to

implement the characteristics unique to them, for example behaviours, such as dance



 20

Chapter 2 Agents Object  Or iented Structure

and walk can be defined differently for each. The two classes contain the same things

as before, but their description is simplified by inheritance from Person (fig. 2.4).

Using inheritance, common descriptions can be reused, promoting the concept of code

reusability [22]. And as descendant classes only implement the extra information that

differentiates them, inheritance cuts redundancy, leading to smaller, easier to under-

stand systems. Another advantage is that, if it is necessary to change some characteris-

tic in the class Person (e.g. how a person talks), it is sufficient to do the modification

Right foot
Left foot

Information

Age
Address
Wife
...

Behaviour

Store name
Jump
Run
Walk
Get Address
...

Parts

Left leg
Right leg
Head

...

Create an instance

Create head
Create right leg
Create body
...

Class Man

Goal Keeper Striker #1 Striker #2

Instance of Instance of Instance of

Figure 2.3: Instances of class Man.



 21

Chapter 2 Agents Object  Or iented Structure

in one place. When the modification is implemented Man and Woman automatically

inherit it. This helps create models that are easier to modify and evolve.

2.4.1 Multiple inheritance

Let us assume that one wants to build a new class for female teachers from the class

Woman. Teachers can be male or female and women can have many other professions

apart from teaching. When describing a new class, if one needs characteristics from

two other classes, it is possible to inherit from both of them. Multiple inheritance

means that one class can have more than one direct ancestor. In the present example

Right foot

Information

Age
Address
...

Behaviour

Store name
Jump
Talk
...

Parts

Left leg
Head

...

Create an instance

Create head
Create body
...

Class Person

Figure 2.4: Classes inheritance.

Information

Husband
Maiden name
...

Behaviour

Class Woman

Dance

Walk
...

Information

Wife
...

Behaviour

Class Man

Dance

Walk
...

Inherits Inherits



 22

Chapter 2 Agents Object  Or iented Structure

the new class FemaleTeacher would inherits all woman operations from the class

Woman and the all the teacher’s operations from the class Teacher. Only information

concerning female teachers would have to be added.

Multiple inheritance permits the combination of the functionality of different classes

into one, but it has its problems. If each of the ancestor classes have a method with the

same name, let’s say a method called print. This method prints the class representation

in the standard I/O. From which ancestor will the derived class inherit this method? It

can not inherit from both. And if the ancestors have internal variables with the same

name, how can the derived class name them? Unfortunately there isn’t a standard way

for dealing with this problem and each object oriented language offers a different solu-

tion.

2.5 Polymorphism

Objects in a system will stimulate each other and their behaviour as a whole will be the

system behaviour. Instances can have information about other instances they send

messages to, but if an instance doesn’t have to be aware of which class the receiving

instance belongs to, we have polymorphism. Polymorphism means that the sender of a

stimulus does not need to know the receiving instance’s class. The receiving instance

can belong to an arbitrary class [20].

The class Person performs the operation Get Person’s Name (fig. 2.4), all classes

derived from it inherit this operation. If an object wants to query about a person’s

name, it doesn’t matter if the object receiving this query will be from the class Man,

Woman or FemaleTeacher, all of them should implement the operation.

It is up to the receiver of a stimulus to determine how it should be interpreted, not the

transmitter. The transmitter needs only to know that another instance can perform a

certain behaviour, not which class it belongs to nor which operations will perform that

behaviour. Only what should occur is specified, not how it should be implemented. In

this way flexible and modification resistant systems can be implemented. If a new



 23

Chapter 2 Agents Object  Or iented Structure

object from a new class is added, this modification should only affect this new object

not those who send stimuli to it.

2.6 Object Oriented Programming

To define what is object oriented programming is very difficult. It is essentially a style

of programming. An object oriented system can be implemented in a standard proce-

dural language, like C. An implementation in an object oriented language, however,

would profit from the better representation of the core concepts (like objects and

classes) and from facilities such as inheritance.

An object oriented language should support, at least, the following core concepts of

object orientation:

There are many object oriented languages around, such as Smalltalk [27], Eiffel [29],

CLOS [30] or Objective C [28]. Different languages have chosen different solutions

for different problems, and they support object orientation concepts in different ways.

This makes some languages more suited for some applications than others.

C++ was the language of choice for this application for many reasons:

• Compatibility - C++ is compatible with ANSI-C, it inherits its basic language

mechanisms such as functions, arithmetic, selection statements and looping con-

structs [23]. C++ is more an evolution of C to deal better with object oriented pro-

gramming than a complete new concept (like Smalltalk). Indeed one can write

ANSI-C programs in C++. This compatibility allows the reuse of C programming

expertise and the use of libraries and programs already written in C. And, as C is a

Encapsulated objects

Class and instance concepts

Inheritance between classes

Polymorphism



 24

Chapter 2 Agents Object  Or iented Structure

very popular language in the VLSI software field, this compatibility becomes a big

asset.

• Efficiency - Again because it is an object oriented extension to the language C, C++

inherits its efficiency. As C, C++ allows the user a great deal of control. If, on one

hand, this increases the development burden for the programmers (C++ isn’t a lan-

guage for rapid prototyping) on the other hand it allows a better use of the resources

available. C++ inherits many of the C language’s performance compromises.

• Portability - C++ is becoming a very popular language, not only in the object ori-

ented world but mainly in the mainstream language market. There are many popular

implementations in all popular operational systems, such as Visual C++ (Micro-

soft), Borland C++ for Windows-Dos; Gnu G++, SunSoft C++, for Unix. Objective

C, for instance, has the same C ascendence and advantages but lacks the widespread

availability of C++.

In addition to these characteristics, C++ is a fully fledged object oriented language,

supporting all four core object oriented concepts. The following subsections show how

C++ can implement each concept. They do not try to show how the whole language

works. A complete definition of the language and related programming techniques can

be found in [23], [24] and [26].

2.6.1 Objects

In C++ an object is implemented internally as a number of variables which stores

information and a number of operations for the object. In opposition to pure object ori-

ented languages, like SmallTalk, in C++ internal variables can be made accessible

from outside. Each object is able to receive a certain number of stimuli, in C++ this is

done by calling one of the object’s public functions. An object can be referenced by its

name or address. A call to an object Invoice would look as follows:

By name: invoice.billAccount();

By address reference: invoicePtr->billAccount();



 25

Chapter 2 Agents Object  Or iented Structure

2.6.2 Classes and instances

Objects are described by classes. They are both a module for source code and a type

for the class instances. In C++ classes are user defined types. An example of a class

Invoice would look as follows:

class Invoice {

float value;

char* customerName;

public:

char*getCustomerName();

void billCustomer();

void printInvoice();

};

In this class two variables, value and customerName, and three functions, getCus-

tomerName, billAccount and printInvoice, are declared. In this particular case,

only the functions are accessible from outside the class instances, because they were

declared public. Functions and variables can be defined as in C, just by adding a refer-

ence to the class, as in:

char* Instance::getCustomerName() { <function body> }

Instances can be declared or created by the operator new, in this case this operator

returns a pointer to the instance:

Declared:Invoice invoice1;

Created: Invoice* invoicePtr= new Invoice;

2.6.3 Inheritance between classes

Inheritance means that another class can be derived from a existing one, just stating

how it differs from it. The class from which another class is derived becomes its base

class. Assume that a new class Invoice is needed, which is able to bill someone over

the Internet using e-mail. It differs from Invoice just on the operations dealing with

the network. A possible declaration would be:



 26

Chapter 2 Agents Object  Or iented Structure

class InvoiceEmail: public Invoice{

char* emailAddress;

public:

void setEmailAddress(char*);

void billCustomer();

};

This class declaration states that InvoiceEmail descends from Invoice. The new

class inherits all functions and variables of Invoice. It adds the variable emailAd-

dress to hold the customer e-mail address. It also adds as well a new function setE-

mailAddress to change the e-mail address, and overrides the Invoice’s function

billCustomer to allow the new way of billing. The C++ override feature allows the

substitution of a function in the ascendent class for a new one defined in the new class.

2.6.4 Polymorphism

In C++ pointers to a base class can be used to refer objects of a derived class. Poly-

morphic behaviour can be implemented in C++ using this feature and virtual func-

tions. Virtual functions allow the declaration of functions in a base class that can be

redefined in each derived class. The compiler and loader will guarantee the correct

correspondence between objects and functions applied to them [23]. For example, in

the last case, if the new function billCustomer in the class InvoiceEmail is to be

used, a variable of type InvoiceEmail or a pointer of type InvoiceEmail* has to

be used. But if the class Invoice is redefined as:

class Invoice {

float value;

char* customerName;

public:

char*getCustomerName();

virtual void billCustomer();

void printInvoice();

};

The function billCustomer becomes virtual. Now if a general pointer of type

Invoice* is created and used to point to objects of classes Invoice and InvoiceE-



 27

Chapter 2 Agents Object  Or iented Structure

mail, when the function billCustomer is called, the compiler will use the correct

version for each case:

Invoice* invoicePtr;

invoicePtr= new Invoice;

invoicePtr->billCustomer();// Calls the function in Invoice;

...

invoicePtr= new InvoiceEmail;

invoicePtr->billCustomer();// Calls it in InvoiceEmail;

The programmer doesn’t have to know which kind of object is pointed by

invoicePtr, he just needs to know that the function billCustomer will bill a cus-

tomer, it is up to the receiving object to decide how to implement it.

2.7 Agents’ basic structure

At the implementation level, object orientation means encapsulating data structure

with related functions and using the notion of stimuli by message passing or, in C++

case, by function calling to accomplish the task of programming. Object oriented

design means turning the software requirements into specifications for objects and

derived class hierarchies from which the objects can be created. The problem becomes

how to find the objects [19].

In any realistic software project, changes are all but inevitable. Also, the nature of the

human creative process is inherently evolutionary. The usual human approach to a new

programming task is to go through an interactive process of analysing the problem,

implementing it, and then refining the design. Prototypes or working models of the

program are created. Object oriented design techniques reflect the evolutionary aspect

of software development. The steps of analysis, design, and implementation used in

more traditional software development approaches, are still necessary, but the separa-

tion between them is blurred. And in each phase the design is more closely tied to real

world objects found in the problem being solved.



 28

Chapter 2 Agents Object  Or iented Structure

The development of the hierarchy of classes used in this project followed this model, a

prototype with a hierarchy of classes was created [18]. On this prototype many ideas

were tried, some classes were moved up and down the class hierarchy. The position of

a class in the hierarchy reflects how specialized the class is, the higher its position the

more general a class is. Many classes where broken down, generally making a more

general class, more useful to share behaviour, and a more specialized one, more useful

to implement a specific task.

Through this interactive process, the basic hierarchy of classes shown on figure 2.5

and 2.6 was created. These figures show only the basic classes, shared by all programs

(placement and routing included).

Other classes where created to support specific behaviours, and will be discussed in

the following chapters, whenever needed. The following explanations about this class

hierarchy are intended to give an overview of how the classes relate to each other and

to show the basic foundations of the program. More specific topics about the program

workings are not discussed.

2.7.1 The Object class

The root class of figure 2.5, Object, has the basic virtual functions shared by almost

all other classes. Those functions allow a very high level of polymorphism, they allow

basic functions to be performed by objects regardless of their types. The declaration of

those public functions is:

class Object{

...

public:

virtual void operator=(const Object&);

virtual Object& copy() const;

virtual Type& type() const;

virtual Boolean relate(const Symbol&, const Object&) const;

virtual void print(ostream&) const;

};



 29

Chapter 2 Agents Object  Or iented Structure

The five basic operations all objects should perform are then:

• Equal - The operator= overloads the normal C++ operator = to perform the oper-

ation defined in the function. In this case, creating an equal operator that is per-

formed by any object on any other object, regardless of type. Of course, if the two

objects involved in the operation do not support it between themselves an error will

be signalled.

• Copy - Creates a copy of the object and returns a pointer to it.

• Type - Returns the type of the object.

Figure 2.5: Agents basic classes.

Segment

Null

OwnObjRealObj IregObj

Object

Real

Ptr Symbol

Type

Number String

ViewLst

Pt

ViewObj

List

Int

Rectangle

Linea

Basic class hierarchy

Component



 30

Chapter 2 Agents Object  Or iented Structure

• Relate - Takes two arguments, the first is a symbol representing a relationship, the

second an object. If the object receiving this stimulus has the relationship repre-

sented by symbol with the object in the function’s second argument, it returns true.

• Print - Prints a representation of the object on the stream provided. A stream can be

almost any character device, such as the screen, a file or a socket.

These five functions allow a more general treatment for the various objects in the pro-

gram. They allow, for instance, that general set classes, like the class List, perform

their functions not actually knowing which kind of objects they hold. In this way more

work can be performed by general classes, reducing complexity.

2.7.2 Second hierarchical layer

The second layer in the hierarchy has three classes:

• IregObj - Holds unusual objects that do not implement all or part of the virtual

functions defined in the class Object. It is used for debugging purposes only.

• RealObj - The classes derived from RealObj hold the basic data structures: type,

numbers, strings, numbers and Null (a class representing NULL).

• OwnObj - Classes derived from OwnObj are set structures formed by other objects.

For example: class Pt (point) is formed by two objects of class Int (integer), class

Linea (line) is formed by two objects from Pt.

In Agents, design information is stored in different kinds of list objects, some store

whole designs (DesignCmp) other just a simple wire (Wire). When one of this list

objects is deleted all memory allocated to hold its elements should be deallocated. As

C++ does not have any automatic garbage collection facility, it is the programmer’s

responsibility to ensure that all the allocated memory is deallocated when its space is

no longer necessary. Objects from classes derived from OwnObj can “own” the objects

inside them. This means that they will do all the memory management, creating and

destroying objects whenever necessary. If an object is “owned” by another, there are



 31

Chapter 2 Agents Object  Or iented Structure

mechanisms for not allowing any other object to destroy it. This solution is more effi-

cient than Lisp style garbage collection and it takes care of almost all memory man-

agement problems.

2.7.3 The other layers

The first two layers hold virtual classes, classes that only hold functionality for the use

of derived classes. It is not possible to create objects belonging to them. From the third

level onwards almost all classes are non-virtual, there are objects belonging to them.

On the left of figure 2.5 is shown the main RealObj derived classes:

• Type - Holds the type of an object.

• Number - A virtual class that holds basic functionality for numbers. The actual

number classes, Int for integers, Real for real numbers and Ptr for pointers, are

derived from it.

• Null - A class that represents the NULL value.

• String - A class which holds and manipulates strings. The class Symbol is derived

from it, Symbol is a special kind of string that can not be changed once created.

On the left side of figure 2.5, the main OwnObj derived classes are shown:

• List - Holds a linked list of objects. There is also a template class called Lst that

creates specialized lists for any kind of object, for example Lst<Int> for Int

objects and Lst<Pt> for Pt objects.

• ViewObj - This is a virtual class for viewer objects. An object is said to be a viewer

when it points to another object and its methods modify this object. Through the

viewer methods other objects can interface with the viewed object as if it had

another completely different interface (or view). ViewLst is a specialization of

ViewObj to deal with lists.



 32

Chapter 2 Agents Object  Or iented Structure

• Pt, Linea, Segment and Rectangle - These are the basic geometric classes, that

hold basic geometric figures, respectively, point, line, segment and rectangle.

• Component - The class describes the components found in the design.

2.7.4 Design classes

An important part of the general class hierarchy (fig. 2.5) are the classes dealing with

the design representation under Component and List classes, shown in figure 2.6.

Note that the hierarchy of classes representing the design is based upon OOP require-

ments it does not necessarily resemble a design hierarchy. The hierarchy can be

divided in three groups:

• Components - The four classes derived from the Component class describe the

components found in the design: MOS and bipolar transistors, I/O pads and electric

nodes. They hold information such as the I/O pads of each component and the com-

ponent’s layout description.

Figure 2.6: Components classes.

ElectricNode

Lst<Component>

Component

Wire

OwnObj

Fet

Bipolar Pad DesignCmp

List

Components Hierarchy



 33

Chapter 2 Agents Object  Or iented Structure

• Wire - This class describes layout as a list of rectangles belonging to various layers

that form a particular connection. It is used by Component objects to describe the

components layout.

• Design - The class DesignCmp holds the designs. It is basically a list of objects

derived from class Component and a rich set of functions to manipulate them.

These classes are extensively used by the objects dealing with the placement and rout-

ing.

2.7.5 The Agents’ library organization

Apart from these two hierarchies there are many more classes in Agents, divided in

groups of libraries (fig. 2.7):

• Basic functions - These libraries provide the basic functionality for strings, lists,

streams (genlib.h); socket (TCP/IP) communications (socklib.h); and lexical func-

tions (langlib.h).

• Basic Objects - These libraries, basiclib.h, varlib.h and geomelib.h, provide the

basic object hierarchy (shown in section 2.7.1).

• Edif objects - The ediflib.h library provides the basic capability to read the EDIF

language.

• Expert Agents - The basic expert system capabilities, used in the agent expert sys-

tems, come from the experlib.h library.

• Basic design representation - The library complib.h provides the hierarchy shown

in section 2.7.4 and the basic classes to deal with design rules constraints.

• Router Server - Functionality exclusive to the router server (router.h).

• Placer Server - Functionality exclusive to the placer server (placer.h).



 34

Chapter 2 Agents Object  Or iented Structure

The following chapters will explore in more depth the functionality and classes in

these libraries. The above hierarchy just tries to give an overview of the program

organization.

Basic Functions:

Library Tree

genlib.h
socklib.h
langlib.h

Basic Objects:
basiclib.h
varlib.h
geomelib.h

Edif objects:
edif.h

Expert Agents:
experlib.h

Placer Server:
placer.h

Router Server:
router.h

Basic Design Representation:
complib.h

Figure 2.7: Agent’s libraries files hierarchy.



 35

3 Agent Objects

3.1 Introduction

Agents are software components that communicate with their peers by exchanging

messages in a communication language [31]. While agents can be as simple as subrou-

tines, usually they are bigger entities with some sort of persistent control and auton-

omy. What characterizes agents is their ability to communicate and cooperate with

other agents.

Agents are at the heart of this software system, thus they lend their name to the pro-

gram itself. The agent metaphor is employed at two levels: At a higher level, the serv-

ers Placer, Router, Broker and Database can be seen as large agents that communicate

and cooperate over a network. At a lower level, inside the Router and Placer servers,

small relatively simple agents work together to accomplish complex tasks.

These small agents are responsible for all the reasoning done by the Router and Placer

servers, the large agents. The design philosophy is that competence should emerge out

of the collective behaviour of a large number of relatively simple agents. These small



 36

Chapter 3 Agent Objects

agents are implemented as agent objects, the class Agent holds the basic inference rou-

tines and the derived classes add the particular knowledge needed for a particular

application.

Before continuing with an explanation of the mechanisms of agent objects, it would be

interesting to highlight the basic structures of cognitive systems. These structures are

presented in more depth in Newell’s book Unified Theories of Cognition [31], where

the author reviews the foundation concepts of cognitive science and makes a case for

unified theories by describing a candidate: an architecture for general cognition called

Soar. As Guha and Lenat [34] define it, there are two paradigms for “software agents”

today and one of them says that competence emerges from a large number of relatively

simple agents integrated by some cleverly engineered architecture. In their opinion the

architecture of choice for this paradigm is Soar.

3.2 Search and problems spaces

A system displays intelligent behaviour when it behaves in order to utilize its knowl-

edge to attains its goals. This processing takes basically the form of a search.

Search, in this case, is not another method or cognitive mechanism, but a fundamental

process for intelligent behaviour [31]. It is not one method among many that might be

used to attain ends but the most fundamental process of all.

Newell [31] makes two considerations about the special role of search. One he called

the existential predicament of intelligent systems: “When attempting to act, an intelli-

gent system is uncertain. Indeed, that is of the essence of having a problem - it is not

known what to do next”. The system must then search for a solution and that search

tends to become combinatorial because new errors are committed before old ones are

detected and resolved. A search will occur, whatever method is used to solve the prob-

lem, and the more problematic the situation the more extensive the search will be.



 37

Chapter 3 Agent Objects

The second consideration he makes is called the court of last resort: “If an intelligent

agent wishes to attain some end - to find some object X say - it must formulate this

task in some way. It must arrange its activities in some way rationally related to find-

ing X. It will do so - indeed it can only do so - on the basis of available knowledge.

Even to seek more knowledge before acting is already to chose a particular way to for-

mulate the task. The more problematical a situation, the less knowledge is available

that says how to find X - that’s what means to be problematical”. The formulation of

the task that makes the least demands on specific knowledge is then:

“Formulation of last resort: If it’s not known how to obtain X, then create a space to

contain X and search that space for X”.

A space, in this case, is the set of all the possible solutions for a problem. This formu-

lation can always be used. A space can always be found that contains the desired solu-

tion, assuming that a solution does exist. The less knowledge that is available, the

larger this space has to be, and the more difficult and expensive will be the search.

This formulation and the corresponding method for working with it, is usually called

generation and test. Newell writes that “All of the methods used in artificial intelli-

gence are at bottom search methods, built up as further specifications on generate and

test. Means-ends analysis, hill climbing, progressive deepening, constraint propaga-

tion - all are search methods of one kind or another. And all build on generate and

test”.

It can be said that an intelligent system is always operating within a problem space.

This space is created by an intelligent agent to search for a solution to any problem it is

currently attending, it is the agent’s attempt to bound the problem so it becomes work-

able. The agent adopts a problem space to solve a problem and inside this problem

space it can set up sub-spaces. Inside these spaces, the agent is located in some state

and it applies a set of operators to find new states. The agent undertakes this search

process until its goals are fulfilled.



 38

Chapter 3 Agent Objects

3.2.1 The blocks world

As an example, consider the blocks world. In this world there is a robot arm and some

blocks arranged on top of a table. The robot has a camera and it is able to recognise

each block and locate its position on the table. Each block is marked by a letter. The

goal of the robotic system is to arrange the blocks in a certain way chosen by an exter-

nal agent. As figure 3.1 shows, we can see the entire problem as the blocks world prob-

lem space, inside this space the block’s disposition on the table are represented as

states. To change the blocks deposition the robot can move one block at a time, these

movements are represented by operators. The search happens through the states of the

blocks world problem space, using operators to change from one state to another, until

a desired state (the goal state) is reached.

A
B

C

A
B
C

A B C

A
B
C

A
B
C

Operators

Current
State

Desired
State - Goal

Initial
State

Blocks World
Problem Space

Figure 3.1: A problem space



 39

Chapter 3 Agent Objects

3.3 Problem search versus embedded knowledge

There are two kinds of searches going on in intelligent systems. One is the problem

search, which is the search of the problem space just described. The other is the

knowledge search, which is the search in the memory of the system for knowledge to

guide the problem search. In general, intelligent systems engage in both knowledge

searches and problem searches. This leads to a fundamental trade-off for all intelligent

systems, the preparation vs. deliberation trade-off.

When forced to respond to some stimuli a system can deliberate - engage in activities

to analyse the situation and the possible responses. This will lead to a search for an

appropriate response in some space. Or the system can also have various responses or

aspects of responses already prepared and stored. To use such preparations the system

must access memory, retrieve them, and adapt them as appropriate to each case. In

general, each specific situation calls for some mix of deliberation and preparation.

Deliberation will demand search and preparation embedded knowledge.

Based on how much a system relies on search or embedded knowledge, Newell pro-

poses the graph in figure 3.2, which depicts a space with deliberation and preparedness

as dimensions. Particular classes of systems can then be located at particular places on

the graphic:

• Early AI systems had very little knowledge - not more than a dozen rules of

domain knowledge. They did a modest amount of search, with trees of 100 to 1000

nodes.

• Expert systems can be seen as an exploration of what can be attained with very lit-

tle reasoning or deliberation but with all the effort being put into accessing immedi-

ately available knowledge.

• Humans are located by Newell as well. “If we consider expert behaviour on a rela-

tively narrow task, we find that tens of thousands of chunks of information are

involved. Humans do more search than current expert systems do, but only in the



 40

Chapter 3 Agent Objects

hundreds of situations, not in the many thousands. The size of human search is

externally fixed by the externally fixed time to respond (here taken as a few minutes

at best) and the rate the architecture does its basics operations, both of which remain

constant”.

• Hitech is a chess-playing program developed by H. Berliner and C. Ebeling (1988),

which has an official rating in human tournament play in the high master range

(2360) Hitech uses a special hardware architecture with 64 processors to generate

about 175000 chess position per second. This yields about 108 situations per move.

Hitech is a system that operates at massive search. It does not use a lot of knowl-

edge, only about a hundred rules.

Early AI

Expert

Human

Hitech

Systems

Systems

Immediate Knowledge

Search Knowledge

Situations/Task

Rules

Equiperformance
Isobars

Figure 3.2: Preparation versus deliberation trade-off.



 41

Chapter 3 Agent Objects

It is common in artificial intelligence (AI) and cognitive science to talk about human

intelligence and the intelligence of systems like Hitech in contrasting terms. Hitech is

a brute-force searcher that seems to operate in an entirely different way from human

intelligence. Figure 3.2 suggests otherwise. Certainly, different types of intelligent sys-

tems occupy different regions in the preparation-deliberation space, but systems like

Hitech are to be analysed in the same way as expert systems and human are. They

occupy different regions but the analysis is the same.

3.4 The problem-space computational model

Agent objects follow a similar structure as the problem-space computational model

proposed by Newell [33]. Soar and Agent objects are two possible implementations for

the problem-space computational model. Both create problem spaces to search for a

solution. Inside these spaces they have states and they apply operators to find new

states during the search process. They perform searches until they reach their goal.

Soar is bigger and more sophisticated than Agent objects, but the later is better suited

for an architecture where many simple agents work together.

3.4.1 Basics

The knowledge an agent uses to search a problem space can be divided in two types:

task knowledge and search control knowledge [33]. Task knowledge consists of the

initial state, the desired state (or any means to detect it) and the operators. Using just

this knowledge a solution can be found just by exhaustively searching all the problem

space until the goal state is found. This can be very inefficient. Search control knowl-

edge specifies which operator to take from a given state, directing the search to the

desired goal. If a system has appropriate search control knowledge it will know which

operator to take at each step so it can reach the goal state without any search at all. If a

system doesn’t have enough search control knowledge, the system will acquire addi-

tional knowledge through search to determine which operators to take. The blend of

these two kinds of knowledge affects the efficiency of problem solving, but the cor-



 42

Chapter 3 Agent Objects

rectness of the solution should depend only upon the task knowledge. In this way, task

knowledge can be used to have an application up and running and gradually, later,

search knowledge can be added to enhance performance.

Figure 3.3 shows the flowchart of a problem space. Before a problem space can begin

work, the initial state and knowledge of the goal must be available. These are set by

Formulate task. Once the problem space, goal and initial state are known, Select

operator chooses an operator to apply to the current state and Apply operator

applies it to the current state to produce a new one. Terminate task then checks to

see if the new state is the goal one or if success is not possible. If it returns true, execu-

tion is halted, otherwise control go back to Select operator.

A problem space must have knowledge to implement the functions in figure 3.3. For

example it should know how to propose and chose operators. When a problem space

does not have the knowledge to implement one function, an impasse occurs, no further

Apply Operator

Goal
state?

Success
not

possible?

Halt

Select Operator
Formulate Task

Terminate Task
Impasse

Impasse

Impasse

Impasse

Figure 3.3: Flowchart of the problem space computational model.

yesyes

no

no



 43

Chapter 3 Agent Objects

problem solving can be undertaken in this space until knowledge is generated to solve

this impasse. There are four types of possible impasses:

• A tie arises when two objects are proposed, two operators for instance, and there is

no knowledge to chose between the two.

• A conflict happens when there is conflicting knowledge about which object to

chose, for instance: if X is the best and Y is better than X.

• A no-change impasse arises if a problem space, state or operator cannot be selected

or if the current operator can not be implemented.

• Constraint failure arises when there are conflicting constraints, for instance if a

robot has the information go to room D and its sensors detect room D is burning.

Impasses are solved by formulating a subgoal to acquire missing knowledge. The sub-

goal is set up as a task to be solved by another problem space or it can be delegated to

other agent or agents (Soar uses only the first option). The system uses Formulate

task, figure 3.3, to select and initialise the new problem space. The original problem

space, where the impasse occurred, is responsible for supplying the knowledge to

implement Formulate task. If this knowledge is unavailable, a new impasse occurs

and a new subspace is created to search for this knowledge.

Impasses can occur in any problem space, forming a goal/subgoal hierarchy with

spaces and subspaces in one or multiple agents. The top most space represents the

agent’s primary goal.

3.4.2 A blocks world example

Figure 3.4 shows how problem spaces can be used to solve a problem in the blocks

world. The robot’s arm is trying to arrange three blocks in a pile: A on top of B on top

of C. In the figure, the squares represent the states of the problem space, the arrows

represent the application of an operator and, on top of the arrows, are the names of the

operators being applied. The top problem space is the Blocks world, its goal is the



 44

Chapter 3 Agent Objects

global goal. When processing begins, in the initial state S1, the operator Move C to

Table is the only one proposed by Select operator (it is the only possible legal

move) and it is then chosen. Apply operator then applies this operator to S1 to pro-

duce S2. Terminate Task then decides that the goal has not been reached and the

system goes back to Select Operator. Now two operators are proposed to S2: Move

B to Table and Move B to C. As the system doesn’t have any knowledge to decide

between the two, there is an operator tie impasse.

A subgoal is formulated to acquire knowledge to break the impasse. The system cre-

ates a new subspace, called Selection, to achieve the subgoal. Selection knows

how to do a lookahead search to find which of two or more operators does work: it

A
B
C A

B
CC

B
A C

B
A

C
B
A C

B
A

A
B
C

Move B to C
Move B to Table

Move B to C

Move C to Table Move A to B
Move B to Table

Move B to C

Move B to C Move A to B

Evaluate:

Move B to C

Blocks world problem space

Selection problem space

Search problem space

Operator tie impasse

Operator no-change impasse

Figure 3.4: Solving a blocks world problem.

S1 S2 S3 S4

S2’ S3’ S4’



 45

Chapter 3 Agent Objects

evaluates each one to see which will lead to the goal state. The operator Move B to C

is tried first (any operator could have been the first), the system proposes and selects

the operator Evaluate: Move B to C. As the Selection space has no directly avail-

able knowledge about how to apply the operator, an operator no-change impasse

arises. A new subgoal is set up to break this new impasse. The Search problem space

is created. Search space knows how to evaluate operators: it creates a copy of the

Blocks world space, applies the relevant operator, in this case Move B to C, and

continues the problem solving until the result of applying the operator is known, in this

case, until it knows if the goal state can be reached or not. After applying Move B to C

to S2’ to produce the state S3’, the operator Move A to B is proposed and applied (it is

the only legal move) and the goal state is produced.

As the lookahead search shows that Move B to A leads to the desired state, Selec-

tion space indicates that this is the best operator to chose in the context of the original

problem. Select space selects Move B to A over Move B to Table and the impasse

is resolved. As in the Blocks world problem space the goal state has yet not been

reached, the operator Move A to B is proposed and applied (again the only possible

legal move). Terminate task detects that the state S4 is the goal state and execution

is halted.

3.4.3 Selecting values

The knowledge to implement the functions of the problem space computational model,

figure 3.3, is expressed in the form of production rules. To create or change problem

spaces, states or operators, these rules propose values and/or express preferences for

selecting values among a list of proposed ones. Preferences are knowledge about the

desirability of selection of any proposed value. To make a choice based on preference

the system applies knowledge to propose choices, then knowledge to produce prefer-

ence to order the choices. Once all available knowledge has been applied, the choice

that was ranked above all others is chosen. There are nine possible kinds of prefer-

ences:



 46

Chapter 3 Agent Objects

• Acceptable: The value is a candidate for selection, all values (except those with

require preferences) must have an acceptable preference to be selected.

• Reject: The value should not be selected.

• Best: The value is the best candidate to be selected, if there are two best candidates

at the same time an impasse will be generated.

• Worst: The inverse of best. A worst candidate can be selected if it is the only

option.

• Indifferent: It does not matter which value is selected.

• Prohibit: The value cannot be selected.

• Require: The value has to be selected, it overrides a best preference. Two require

preferences for two different values generates an impasse.

• Reconsider: Informs the system to recompute the preferences for a slot (problem

space, state or operator) with the available preferences.

• Parallel: The values can be considered in parallel, if chosen the whole set will be

accepted as a slot value.

3.5 Distributed reasoning

The great majority of AI programs and models use centralized processes. Could dis-

tributed parallelism lend their flexibility and computational power to AI or does intel-

ligence have to have a central place where everything comes together?

Philosophers, like Descartes, believed in a central place or focal point in the brain

where all the senses would come together. For some, that would be the point of inter-

action between mind and brain, the point where the ghost touches the machine. This

concept of a place where the conscious experience takes place, the Cartesian Theatre,



 47

Chapter 3 Agent Objects

would suggest a centralized model for intelligence. One that is in tune with our com-

mon sense.

But this particular region in the brain, the Cartesian Theatre, has not been found yet.

Indeed, studies on the visual cortex have not found, so far, one particular region in the

brain where all the information needed for visual awareness appears to come together

[40].

A distributed intelligence model would not only solve some important “implementa-

tion” problems, like speed, but would fit better with results from recent mind studies

[41][42]. In Consciousness Explained, Dennett [43] proposes such a model, the Multi-

ple Draft model. It asserts that all varieties of perception - indeed all varieties of

thought or mental activity - are accomplished in the brain by parallel multitrack proc-

esses of interpretation and elaboration of sensorial inputs. Information entering the

brain is continually being edited.

3.5.1 The hive mind

In nature, the human brain would not be the only example of a distributed reasoning

system, simpler systems do exist and taking a look in one of them, a swarm of bees,

could be very useful.

When bees need to relocate a colony, they have a search problem to solve and they use

a very interesting distributed mechanism [37]. They form a swarm and pour them-

selves out into the open. During these events the queen bee is not in command, she

merely follows the flow of events. Some scout bees are sent ahead of the swarm check-

ing possible hive locations. They report back to the swarm dancing near the swarm’s

surface. During this report the more enthusiastically a bee dances, the more other bees

will be compelled to visit the reported site. The bees will inspect those sites whose

scout’s dance they liked most.

When each of these bees returns from its inspection, it supports the site by joining the

scout that is dancing for that site. That induces more followers to check out the leading



 48

Chapter 3 Agent Objects

sites and joining in, when they return, the performance of their choice. Few bees, apart

from the scouts, visit more than one site. Gradually one large finale will dominate the

dance-off. The biggest crowd wins.

Kelly [37] writes “It’s an election hall of idiots, for idiots, and by idiots, and it works

marvellously”. The swarm, as an ant colony, behaves more like an individual than a

group, but the bees are probably unaware of the swarm. They have a set of simpler

individual behaviours that add up to very complex group behaviours. The whole is far

smarter than its parts.

3.5.2 Defining behaviour systems

In searching for a new site a swarm is acting as a behaviour oriented system. A behav-

iour approach starts from the view point of behaviours as the fundamental unit of anal-

ysis. A behaviour is a regularity in the interaction dynamics between an agent and its

environment [45]. For example, it may be observed that an agent maintains a certain

distance from a wall. As long as this regularity holds, observers may say that there is

an obstacle avoidance behaviour.

To realize a behaviour, there must be some sort of mechanism in the agent. This mech-

anism should be implemented using different components and a control program. The

observed behaviours are due to the interaction between the operation of the mecha-

nism and the environment the agent is experiencing. A behaviour system is then

defined as a collection of components responsible for realising a particular behaviour.

Using this model, small robots can be built that can show quite interesting behaviours

while using few hardware or software resources. Among these robots there is a group

of small, six legged ones called insect-like robots.

3.5.3 Insect-like robots

Genghis is a cockroachlike robot the size of a football, built by Rodney Brooks at the

MIT (Massachusetts Institute of Technology) [37]. Genghis has six legs but no central



 49

Chapter 3 Agent Objects

brain. Its 12 motors and 21 sensors are distributed in a network without a centralized

controller. Yet the interaction of these “muscles” and sensors achieves a complex life-

like behaviour. Each of the robot’s legs works independently of the others, each one

has its own microprocessor to control its actions. To coordinate communications

between the legs there are other microprocessors. The walking process is a group

activity involving all legs. Entomologists say that this is the same way that real cock-

roaches cope - they have neurons on their legs to do the thinking.

Walking in Genghis emerges out of the collective behaviour of its legs. Two motors in

each leg lift, or not, depending on what the other legs around them are doing. If the

motors activate in the correct order, walking happens. Walking is not governed by any

particular processor, there is no smart central controller. Brooks called it “bottom-up

control” [38][39]. If you snip off one leg it will shift gaits with the other five without

losing a stride, this is an immediate self-reorganization.

Genghis legs have few simple behaviours and each independently knows what to do

under various circumstances. For instance, two basic behaviours can be thought as “If

I am a leg and I’m up, put myself down,” or “If I am a leg and another leg just went

forward, I should go back a little”. These processes exist independently, run at all

times and fire whenever the sensory preconditions are true. To create walking then,

there just needs to be a sequence of lift legs. As soon as a leg is raised it automatically

swings itself forward, and also down. But the act of swinging forward triggers all the

other legs to move back a little. Since those legs are touching the floor, Genghis moves

forward.

Once Genghis can walk over a flat surface, other behaviours can be added to improve

its walk, such as climbing over a small obstacle. These new behaviours are added on

top of the existing ones. The behaviours are organized following the subsumation

architecture [46], shown on figure 3.6. The subsumation architecture divides the con-

trol architecture into task achieving modules or behaviours. Instead of dividing the

problem into sequential functional modules, the problem is sliced into layers of behav-

iours (fig. 3.6), each layer forming a competence level of a control system [47]. The



 50

Chapter 3 Agent Objects

main idea is that layers corresponding to different levels of competence can be built

and added on top of each other, each new layer adding a new level of overall compe-

tence to the system.

The behaviours in a lower layer are unaware of any other behaviour belonging to a

layer higher than theirs. When a behaviour in a higher layer wishes to take control, it

can subsume the role of lower levels, inhibiting them (inhibition line in figure 3.6).

New behaviours will overpower others, and thus get expressed, only on those situation

where their action will improve performance or initiate a newly added response, other-

wise the old behaviours will do business as usual, which means compete to get

expressed. This system is easily extensible as new behaviours just add some function-

ality to an already working system.

Genghis is an example of how an artificial behaviour system can work, some of its

ideas will be explored in the implementation of distributed behaviour of agent objects.

Figure 3.5: Layers of a behaviour hierarchy.

Build maps

Explore

Wander

Avoid objects

Move legs

Inhibition line

Sensors Actuators



 51

Chapter 3 Agent Objects

3.6 Implementation of Agent Objects

The agent objects’ implementation details have not been discussed up to now, the

problem space has been viewed as a knowledge level system. States of the problem

space were described according to their knowledge contents, and operators according

to how they change the content of a state. No particular representation was used for the

knowledge.

Figure 3.6 shows the architecture of a C++ object derived from the class Agent, in this

case this object is controlling a robot in a blocks world. The Goals list contains the

current hierarchy of problems spaces, organized in a goal context stack. Each goal

context contains a goal, the problem space being used to search for that goal, the state

slot of the program space, and the operator currently being applied. The Preference list

contains values proposed by the rules with their respective preferences. Internal varia-

bles are any kind of variables or objects held by a particular derived agent. The in and

out triangles represent accesses to other objects or variables outside the agent object.

Goals list

Internal variables

Rulesmatch

action

decision

propose

in

Agent

out

Figure 3.6: Agent’s structure

if side

action side

Preference list



 52

Chapter 3 Agent Objects

Task and search control knowledge are encoded as production rules in permanent

memory. These rules test the state of the Goals list, internal variables and the outside

world and when fired, they can act on the internal variables or on the outside world or

produce preferences for changing the Goals list elements. The production conditions

are C++ language’s if statements, they can have any kind of statement allowed by

C++, including function calls. Matching routines are not supplied by the class Agent,

since there aren’t facilities to match templates against working memory elements, such

as in Soar or OPS5 [43]. In the rules’ condition section, objects derived from the class

Agent have to perform the comparisons themselves or rely on the object being tested

to supply some form of matching method. For instance, list objects have methods to

match templates against their contents.

Objects on the Goals list are represented as slots. A slot is a list where the first element

is the slot’s identifier and the others are slot values. All slots have, at least, an identifier

and they can have any number of values. Each element in the Goals list is a list repre-

senting one goal and a problem space. The last list represents the top goal:

( ( (NAME GOAL_11)

(PROBLEM_SPACE ( (NAME BLOCKS) ... ))

(STATE ( (NAME FIRST) (TABLE OK) ... ))

(OPERATOR ( (NAME MOVETO) (POSX 5) (POS_Y 7) ... ))

)

( (NAME GOAL_10) ...

)

...

)

When there is an impasse a new goal is automatically created in the Goals list with

data about the impasse. The Goals list should not be directly modified by the rules

action, rules should instead propose values or add preferences to the Propose list. The

result of these preference judgements should determine changes on the Goals list.

However to enforce this prohibition in C++ would be very difficult and costly. If the

user wants, he can override this rule.



 53

Chapter 3 Agent Objects

The class Agent holds the basic inference routines, but the derived classes should add

the knowledge, in the form of rules, specific to a particular application. They do that

using the virtual method expert(). Derived classes redefine this method and define

their rules on it. The class Agent then uses the method to apply the rules, because this

is a virtual method, the class does not need prior knowledge about the rule themselves.

The following is an example of a simple rule:

 RULE(“Cont*propose*operator*createColumns”,

isGoal(CREATE_COLUMNS, G1) &&

isState(G1, CREATE_COLUMNS_1)

) {

SET_SLOT( G1, OPERATOR,

new_LIST(new_LIST(NAME, CREATE), new_LIST(POS, 3, 2)),

ACCEPTABLE);

 }

This rule just tests if there is a goal called CREATE_COLUMNS and if this goal has a

state called CREATE_COLUMNS_1. If yes it proposes a new value for the operator slot

of the goal, this operator is named CREATE and has a position slot named POS with two

values 3 and 2. The preference for this value is ACCEPTABLE. The rule is named

Cont*propose*operator*createColumns, it will identify the rule if the debug

option is in use. The rule’s names follow an optional code showed in table 3.1 (in this

table PSCM stands for Problem Space Computational Model).

[context] [PSCM function] [PSCM type] [name(s)]

The
object
that
owns the
rule.

proposal

comparison

selection

refinement

evaluation

testing

goal

problem-space

state

operator

The name of the PSCM
object the production
is about, or some
other descriptive term
for the object being
augmented.

Table 3.1:     Rules’ names code



 54

Chapter 3 Agent Objects

3.6.1 Operation

Agents operate by repeatedly running decision cycles, as illustrated in figure 3.7. In

each decision cycle an object agent decides how to change the Goal list, either by

changing a problem space, state or operator, or by creating a new goal in response to

an impasse. A decision cycle has two parts: An elaboration and a decision phase. An

elaboration phase consists of a certain number of elaboration cycles. In each elabora-

tion cycle all the condition parts of the rules are tested. If the condition is true the rule

fires immediately. When a rule fires it can change some internal variable or something

outside, propose a new value for the Proposed list or add preferences for a proposed

value. After all rules have been tested another elaboration cycle begins. This is done

because changes made by the first wave of firing rules can trigger other rules to fire as

well. It goes on until there is no firing in a cycle. The system has reached quiescence.

The decision phase begins after quiescence, the agent computes all preferences for the

values in the Preference list and decides how to change the Goals list. If the prefer-

ences do not specify what to do, an impasse occurs and a new goal is set up to try to

solve it. This new subgoal can use a new problem space to try to solve the impasse or

pass the problem on to be solved by another agent or agents.

Decision cycle 1 Decision cycle 2

Elaboration phase Decision
phase

Elaboration phase Decision
phase

cycle 1 cycle 2 cycle 2 cycle 3 cycle 4cycle 1cycle 3

Quiescence Quiescence Time

Figure 3.7: The decision cycle



 55

Chapter 3 Agent Objects

Agent objects and Soar are different from other common cognitive architectures or AI

shells in that they don’t make arbitrary decisions about what to do next. There are no

built in conflict resolution mechanisms or any other schemes to solve dead locks when

the knowledge is insufficient or conflicting. Instead decisions are made through the

application of task and search knowledge. The system’s behaviour is controlled

entirely by the knowledge stored in an agent’s rules given by the system’s program-

mers, not by built in assumptions. When knowledge is insufficient, the system

searches the problem space to generate more knowledge about how to proceed, in such

a way that any decision taken will not be arbitrary but will be based on the characteris-

tics of the task being solved.

3.6.2 Distributed behaviour

Agent objects are well suited to distributed processing, they are small in comparison to

Soar or other cognitive systems and they are C++ objects, which means they can use C

libraries to communicate over a network and can be embedded in distributed applica-

tions. Another advantage of C++ is that its object oriented design helps isolate and

encapsulate software, which is very good if you need to create independent agents.

The class Agent could use many different schemes of distributed reasoning, but a

model based on behaviours has been implemented. The agent objects have a “person-

ality” and an aim in life. Their personality is determined by the set of behaviours they

can perform, similar to the insect-like autonomous robots, discussed in section 3.5.3.

Changes in behaviour can be dictated by an object’s perception of changes in its envi-

ronment, this would be similar to the mechanisms present in the interaction of individ-

uals, such as bees. Or they can be directly commanded by another agent, similar to the

more close interactions (inside individuals) present in organs or cells, where sub-

stances, such as hormones, are intentionally produced by one cell to change the way

another group of other cells behave.

Environmentally triggered behaviours are implemented using the rules. They will test

an external input point, and from it determine which responses are appropriate. Using



 56

Chapter 3 Agent Objects

insect-like robots as examples, this would be the way the walking behaviour is imple-

mented: legs test external inputs to detect if they are touching ground or if the other

legs around them are moving. Now suppose that a camera is added to this insect-like

robot, this camera is able to recognise images of rubbish. The concept here is to have

the robot roaming around until it stops on a piece of rubbish, at that time the two front

legs should grab the rubbish and put it on top of the robot. The front legs can not rec-

ognise rubbish, since this is the job of the computer attached to the camera. The way to

change their behaviour is for the camera to act directly on them and change completely

their set of behaviours.

The same results could be achieved by the same mechanism used as before, but, as a

whole new set of behaviours will be active, there is a more efficient way of doing it.

Rules can be arranged in groups, and these groups can be activated and deactivated.

Rules on inactive groups won’t be tested, which improves performance. The virtual

expert() function for an agent with two groups of rules would be:

void expert() {

GROUP (WALKING)

RULE( ... )

RULE( ... )

All rules concerning walking behaviour

ENDGROUP;

GROUP (GRABBING)

RULE( ... )

RULE( ... )

All rules concerning grabbing rubbish behaviour.

ENDGROUP;

}

3.7 Why use the class Agent reasoning model?

Why use this model of reasoning? If one takes a look at the literature about placement

and routing systems, they can be divided in two groups of applications: One uses

intensive search algorithms, such as Lee’s algorithm [48], simulated annealing [49] or

the genetic algorithm [8]. And the other group uses expert systems [1] [2] or other



 57

Chapter 3 Agent Objects

knowledge based approach [50]. If these two groups are put together on the graphic of

figure 3.2, they will be located at two points far apart on the graph (figure 3.2). The

agent object approach, when added to the graph, will be located halfway down the line

connecting the two groups.

Agent objects advantage is that it is flexible enough to “slide” over the line connecting

the two other groups. Because this is a domain that is search intensive, it is impossible

to have rules to count for each step of the design process. Agent objects allow this

intensive search to take place, thus sliding closer to the Search Group solutions, but,

whenever knowledge is available, they allow embedded knowledge to reduce search,

thus sliding closer to Expert Group solutions.

Expert

Search Group

Group

Immediate Knowledge

Search Knowledge

Situations/Task

Rules

Figure 3.8: Agents as a more complete solution.

Agents



 58

Chapter 3 Agent Objects

Another advantage is that the quality of a solution can be trimmed to the amount and

kind of resources available. Quality improves whenever one can afford more searching

or more knowledge is available about an application. An eventual lack of either of the

two can be compensated by more of the other.



 59

4 Agent Servers

4.1 Introduction

In chapter 3 the concept of agents, as software components that communicate with

their peers by exchanging messages in a communication language [31], was intro-

duced. It was said as well, that the agent metaphor is employed here at two levels: at a

higher level, servers can be seen as large agents that communicate and cooperate over

a network, and at a lower level small relatively simple agents work together inside the

servers. The later are implemented using agent objects and were introduced in chapter

3. The former are the main topic of this chapter.

Software agents can be used to partition large software into smaller units, in the soft-

ware industry agents can play an important role in a product suite [53]. Suites are a set

of applications that used to operate in isolation, but have been integrated to help

reduce the cost of software ownership and improve productivity. Applications can

communicate and use each other’s resources to accomplish a bigger task. Because they

still are independent programs, they can run in parallel in different machines, thus

improving performance.



 60

Chapter 4 Agent Servers

4.2 Client/Server Model

The Agents system uses four agent servers that can run in parallel on different

machines to solve cooperatively a placement-routing problem. They were imple-

mented as a distributed system using a client/server model. A distributed computer

system contains software programs and data resources dispersed across independent

computers connected through a communication network [51]. Distributed solutions

are increasingly common in applications for office automation, process control, collab-

orative workgroups and concurrent engineering. Distributed architectures allow users

of individual, networked computers to share data and processing power, often over

long distances. Distribution can also enhance availability, reliability and performance.

However, to deliver these benefits, distributed computing incurs design costs not

present in centralized systems, most notably increased control complexity. Figure 4.1

shows an example of a practical, heterogeneous computer network, where many dif-

ferent machines from different vendors are interconnected. Just the number of user

manuals for a system like this, can give a good idea of the degree of complexity

involved.

Coordination models represent one way to deal with this increased control complexity

coherently and uniformly. A coordination model establishes logical roles and associ-

ated behaviours (for applications that assume such roles) for executing distributed

interactions [51].

One coordination model widely used in distributed systems is the client/server archi-

tecture. A program, the client, requests an operation or service that some other applica-

tion, the server, provides. When a server receives a client request, it performs the

requested service and returns to the client any results. A client interface specifies the

individual services or operations offered by the server.

The client/server model offers simplicity in closely matching the flow of data with the

control flow. In addition, the model promotes modular, flexible, and extensive system

designs. Data resources and computing services can be organized, integrated and used



 61

Chapter 4 Agent Servers

as a service. Services include operating system functions, such as naming and authen-

tication; shared information resources, such as printers and file systems; and applica-

tions, such as database and electronic mail. Programs can sometimes act either as

servers or clients, for instance a relational database server (such as Oracle) reading a

file from a file server is acting as a client (of the file server), but when it gives the

retrieved information to the application that requested it, it is acting as a server.

4.3 Software agents

Agent-based software engineering was invented to facilitate the creation of software

able to interoperate in heterogeneous environments [31]. In this approach to software

development, application programs are developed as software agents, i.e., software

components that communicate with their peers by exchanging messages in an expres-

Network

Figure 4.1: Heterogeneous network.

File ServerPrinter

Workstation #1 Workstation #2 Workstation #3



 62

Chapter 4 Agent Servers

sive agent communication language. The advantages of this approach are more flexi-

bility and its suitability for use in a client/server implementation model. As said

before, the whole Agents system is formed by four agent servers:

• Router - It wires the circuits sent to it.

• Placer - It places components in a cell and uses the Router to wire them.

• Database - It keeps all the information that is dependent upon the fabrication proc-

ess, such as the design rules.

• Broker - It makes the services of the other servers available. As its name implies it

manages the available resources, in this case the servers, to meet the demands of the

clients.

4.3.1 Communication

The agent servers communicate over a network, and as they are intended to run on

Unix machines and over the Internet, TCP/IP Internet Protocol [52] sockets were used.

Sockets are the basic components of interprocess (intersystems) communication in

TCP/IP. They provide access to the network transport protocols and are an endpoint of

communication to which a name can be bound. There are two kinds of sockets for

application programs: the datagram and the stream sockets. A stream socket provides

bidirectional, reliable, sequential, and unduplicated flow of data with no record bound-

aries. A datagram socket provides just bidirectional flow of data, the data is divided in

packages, the receiver can receive them in a different order from the sending sequence

and may receive duplicated messages.

Stream sockets were chosen as the communication method between the servers

because a secure and simple method was required. Using stream sockets and the C++

iostream library, it was possible to develop a simple stream pipe between the servers.

Servers and clients send commands through the sockets as ASCII strings using Lisp

[54] like languages. This form was chosen because Lisp is easy and fast to parse and



 63

Chapter 4 Agent Servers

extend, it facilitates debugging (the messages can be easily read) and for compatibility

with EDIF (Electronic Design Interchange Format) [55]. EDIF is a standard Lisp like

language used to represent electronic designs. The arrangement of stream sockets plus

ASCII Lisp languages is so simple, that it is possible to make a telnet connection

with any server, type in the commands and read the servers answers.

4.3.2 The router and placer servers

The Router and Placer agent servers form the core of the Agents system, their imple-

mentation will be discussed in more detail in the following chapters. In this chapter,

only their interface with the other servers will be discussed.

After starting, the servers will connect to a client and interpret all strings coming from

it as an EDIF language statement. In addition to the EDIF standard commands, the

servers will perform the three commands shown in table 4.1. All the other commands

in EDIF will be accepted as well, for instance, the client can send in cell libraries. Also

the set of commands can be expanded easily. All the servers will answer the com-

mands using EDIF as well.

Command Action Answer

(DIE) Kills the server. None

(CLEAR) Clear the library and design data in the
servers.

(LIST OK)

(ROUTE (EDIF ...))

or

(PLACE (EDIF ...))

Route or Place the circuit sent in the
command (EDIF....). The command
EDIF, shown here only partially, encodes
a full circuit description.

(EDIF ...)

or

(LIST SORRY)

Table 4.1:     Placer and Router non-EDIF commands.



 64

Chapter 4 Agent Servers

4.4 The Squeme language

Like the Router and Placer servers, the Database and Broker servers will treat all

strings sent to it as commands in a Lisp-like language, but this time the language is

Squeme [56] not EDIF. It was designed to have an exceptionally clear and simple

semantics and few different ways to form expressions. A wide variety of programming

paradigms, including imperative, functional, and message passing styles find conven-

ient expression is Squeme.

The main difference between Squeme and Common Lisp (the ANSI standard for the

Lisp language) is simplicity. The designers of Squeme believe that programming lan-

guages should be designed not by piling up features, but by removing the weaknesses

and restrictions that make additional features appear necessary. Squeme demonstrates

that a very small set of rules for forming expressions, with no restrictions on how they

are composed, is enough to create a practical and efficient language that is able to sup-

port the main programming paradigms. The Squeme standard [56] is just 55 pages

long, probably the smallest standard for any mainstream language.

Because it is simple, Squeme is fast, portable and easy to use, which makes it a perfect

language for rapid prototyping. For this reasons there are many implementations of

Squeme. The STk Squeme implementation [57] was chosen because it is available in

source code, it is compact and easy to extend and because it incorporates the Tk toolkit

[58]. The Tk toolkit is a powerful graphical toolkit that offers high level widgets, such

as buttons, menus and canvas and is easy to use, requiring little knowledge of the X11

windows system fundamentals. Tk was originally built on top of an interpretative

shell-like language called Tcl [59]. STk replaces Tcl with Squeme, producing a very

powerful graphical rapid prototyping system. Even though the STk graphic capabili-

ties aren’t important for the final Agents system, they were paramount during the

development stage, giving an invaluable insight into the program’s workings.

To allow STk to interpret commands from a stream socket, it was necessary to extend

the core STk commands with two new ones: server-command-socket and cli-



 65

Chapter 4 Agent Servers

ent-command-socket. The first command creates a socket and listens to it until a

connection to a client is established, it is used to create servers. The second command

creates a socket and connects it to specified host socket, it is used to create clients.

Both commands will, after connection, interpret strings coming out of the sockets as

Squeme language commands. All this listen and connection activity is implemented

using the notifier mechanism supplied by the Tk library, for this reason any other

activity going on at the same time in the program, such as text editing or button opera-

tion, will not freeze waiting for a connection to get started or for data to be received.

4.4.1 The process DataBase server

The kind of placement and routing undertaken by the Agents system is process inde-

pendent, which means that the system should not be dependent upon particular process

design rules. To achieve this independence all the information about the process rules

is kept in a process Database server separate from the Placer and Router servers.

Whenever any server needs information about the process, it should query the data-

base, through its network connection (socket stream), using the Squeme language.

Figure 4.2 shows the database server window, named db. The figure shows the button

Quit, that kills the application, and a text widget showing all the queries received and

their answers. This window is not essential to the database server, it is used to show

the flow of information to help debugging the program.

The Database server stores its information in hash tables, the information is assessed

using a very simple language. The queries state the type of the information they are

looking for and to which elements (usually layers) this information refers. For

instance:

(minSpacing ndiff cont)

This query is looking for information concerning minimum space between two ele-

ments: the layers ndiff and pdiff.



 66

Chapter 4 Agent Servers

The answer for all queries is sent back in EDIF format, this is implemented this way

because the clients of the Database server, the Placer and Router server, can parse

EDIF but not Squeme. Of course, if necessary in the future, this capability can be

added to them. The answer to the minSpacing query is then (E 15 -7), which repre-

sents 1.5 µm.

The data for each particular process is read from a process description file. The data

tables are created by the command:

 (data-command (<type> <number of elements> (<description>) ...)

The field <type> is the type of the query, <number of elements> is the number of

elements the query refers to, and the <description> is a list containing a particular

combination of elements and the information this combination should retrieve. The

command to make the minSpacing query table can be created like this:

Figure 4.2: Window of the Database server.



 67

Chapter 4 Agent Servers

(data-command

‘(minSpacing 2

(NWELL NWELL (E 85 -7))

(NWELL NDIFF (E 65 -7))

(POLY VIA (E 20 -7))

...

))

The <number of element> field can be 0, in which case the query does not refer to

any elements and always returns the same value. Table 4.1 shows some of the informa-

tion kept by the two process design rules used currently by the servers.

4.5 Architecture of multi-agent systems

Once all the agents of a system have been planed, the question remains of how these

agents should be organized to improve collaboration. A model based on a broker was

adopted. A broker is one who acts as an agent in negotiating contracts. In terms of dis-

tributed computing, the broker provides an intermediary between the client making a

request and the server which fulfils the request [61].

Query Meaning Answer

(minWidth <l1>) Minimum width of layer <l1> EDIF
number

(minSpacing <l1> <l2>) Minimum separation between
layers <l1> and <l2>..

EDIF
number

(minOverlapping <l1> <l2>)) Minimum overlapping of layer
<l1> over layer <l1>.

EDIF
number

(layersNames) The names of all layers availa-
ble in the process.

EDIF
list

(gridValue) Minimum dimension allowed by
the process’ rules.

EDIF
number

Table 4.2:     Possible queries to a Database server.



 68

Chapter 4 Agent Servers

An agent server called Broker was created to coordinate the access of applications to

the Placer, Router and Database servers. It was written in Squeme and, like the Data-

base agent server, the Broker interprets Squeme commands sent in by a stream socket

connection with a client. On top of Squeme, the Broker implements a sub-set of the

KQML (Knowledge Query and Manipulation Language) [60].

4.5.1 The Knowledge Query and Manipulation Language

KQML is a language for programs to use to communicate attitudes about information,

such as querying, stating, believing, requiring and subscribing. The language is indif-

ferent to the format of the information itself, thus KQML expressions can contain sub-

expressions in other languages, such as EDIF or Squeme. KQML is most useful for

communications among agent-based programs, in the sense that these programs are

autonomous and asynchronous and thus need a more complex interaction language.

Finally, KQML is complementary to new approaches to distributed computing, like

the CORBA (Common Object Request Broker Architecture) [22].

Each agent appears to KQML as if it manages a knowledge base (KB). That means,

communication with the agent is with regard to this KB. However, the implementation

of an agent is not necessarily structured as a knowledge base, a wrapper code then has

to translate the representation used in the agent into a knowledge base abstraction for

the benefit of the other agents. For this reason it is said that each agent manages a vir-

tual knowledge base (VKB). Agents talk about the contents of their and other’s VKB

using KQML, but they can represent statements in their VKBs in a variety of lan-

guages.

Each message in KQML language is a list of components enclosed in matching paren-

thesis. The first word in the list indicates the type of communication, the subsequent

entries are parameters, identified by keywords. The Broker recognizes three default

parameters for all messages (table 4.1) and it defines four types of communications

(table 4.1).



 69

Chapter 4 Agent Servers

4.5.2 The Broker server

The Broker agent server retains information about its clients and about the three serv-

ers (Placer, Router and Database). This information forms the Broker’s VKB. Each

client or server is identified by a symbol (generally a number) and has an entry in the

KB. Each entry has six fields with information about the server or client: Identification

symbol, type, host where it is running, socket port it uses to start communications and

information about its process. Not all the fields need to hold information, especially if

the entry is about a client. The searches are undertaken using the identity symbol of a

client/server as a key. Like the other servers (Placer, Router and Database), the Broker

Parameter Meaning

:content The information about which the query express an
attitude.

:language The name of the representation language of the
:content parameter. It defaults to Squeme.

:sender A symbol representing the sender of the query.

Table 4.3:     Default message parameters.

Type Meaning

tell Queries of this type indicate that the :contents sequence is
in the sender’s VKB.

evaluate Queries of this type indicate that the sender would like the
recipient to evaluate the expression in the :contents param-
eter.

ask-one Extra parameter :aspect <expression>.

Queries of this type indicate that the sender wishes to know if
the :contents matches any sentence in the recipient’s VKB
that complies with the restrictions in :aspect.

recommend-one Queries of this type indicate that the sender wants the recipi-
ent to reply with the name of an agent that is particularly suited
to the kind of processing indicated by :contents.

Table 4.4:     KQML communication types.



 70

Chapter 4 Agent Servers

answers its questions in EDIF not in KQML. This is not a good implementation, to

really comply with the ideas embedded in KQML the Broker should have used KQML

in both directions, this would allow a more standard dialogue with application clients.

However, as the Placer and Router serves cannot parse Squeme (and thus KQML), this

compromise solution had to be made for the first version of the system. In future ver-

sions, the Broker should use KQML in both directions.

The Broker does a lot of the housekeeping that would, otherwise, have to be under-

taken by its clients. The Broker will start the Database agent server when it starts,

there is only one Database per Broker. It will start the requested server, Placer or

Router, for the client if there is not any available and the resources in the system allow

it. It will start the servers on predefined hosts. The client does not have to worry about

the network address of any server. Indeed, the only server it needs to know the address

of is the Broker, all the other addresses will be supplied by the Broker. Finally the Bro-

ker will clean up all the servers it started when it is shut down. The Broker decouples

the clients from the implementation details of the servers, the only service that needs

to be advertised is the Broker itself.

When an application wants to use any of the services provided by the serves it starts a

negotiation with the broker (fig. 4.3). The following dialogue would then take place:

1- Application asks a service:

To Broker: (recommend-one :sender ap1 :content ‘placer)

Broker sends back Placer’s identity:

Answer: (list 5)

2- Broker starts a new Placer server to serve the client’s requests.

3- The recent created server (Placer or Router) sends back to the Broker its

address and finds out the Database server’s address:

To Broker: (tell :sender 5 :content ‘(myPort 6565))

Answer: (list OK)

New server asks the Database server address:

To Broker: (recommend-one :sender 5 :content ‘processDB)

Answer: (list 0)

To Broker: (ask-one :sender 5 :aspect ‘address :content 0)

Answer: (list eagle 7676)



 71

Chapter 4 Agent Servers

4- Application asks the service’s address:

To Broker: (ask-one :sender ap1 :aspect ‘address :content 5)

Answer: (list stork 6565)

The Broker knows the Placer’s machine because it created it. If the applica-

tion asks the service’s address before it is available, the Broker answers

(list sorry) and the application should keep trying.

5- The application begins to talk to the Placer server directly:

To service: (place (edif shiftreg.cir (design shiftreg ...)))

Answer: (edif shiftreg.cir (design shiftreg ...))

The client in this negotiation can be either an application trying to use one of the serv-

ices or the Placer server asking the Broker to use a Router. Similarly to the Database

server the Broker has a window to display information. As shown in figure 4.4, the

window shows the dialogue between the Broker and its clients and has a quit button to

shut it down.

Client

Server

Broker

1- Asks a service

2- Creates a server

3- Sends its address and

4- Sends the server’s

5- They get connected.

Figure 4.3: The negotiation between a client and the Broker.

address.

queries about DB.



 72

Chapter 4 Agent Servers

4.5.3 Development phase servers

There are two more servers used just during development. The debugger server dis-

plays information about the rules firing in the agent objects inside other servers.

The graphics server displays layout views and other graphic information about the

internal states of a client. As shown in figure 4.5, this server shows not only layout, but

vectors, illustrating to where the algorithm is going and rectangles, showing crashes or

terminals. The server has the buttons:

• Quit - Quit the server.

• Clear - Clear the graphic window.

• In - Zoom into the design.

• Out - Zoom out of the design.

• Layers Setting - It pops up a menu containing all the layers names and allows

the user to show each layer with only its contours or completely painted.

• Redraw - Redraws the design in the graphic window.

Figure 4.4: Broker agent server window.



 73

Chapter 4 Agent Servers

On the bottom of the window, there is a bar showing the contours and colours repre-

senting all layers. It shows if the elements of a layer are being shown only by their

contour or if they are being full painted.

The client server model is widely used nowadays, it is the model of choice for the

majority of the commercial distributed applications. Programs ranging from the simple

Telnet utility to huge distributed business-wide databases are based in this model, and,

as networked systems became more and more common, more applications are bound

to adhere to this model.

Figure 4.5: Graphic server’s window.



 74

5 Genetic
Algorithm

5.1 Introduction

In nature, individuals best suited to competition for scanty resources survive. Evolving

to keep adapted to a changing environment is essential for the members of any species.

Although evolution manifests itself as changes in the species’ features, it is in the spe-

cies’ genetical material that those changes are controlled and stored. Specifically evo-

lution’s driving force is the combination of natural selection and the change and

recombination of genetic material that occurs during reproduction [17].

Evolution is an astonishing problem solving machine. It took a soup of primordial

organic molecules, and produced from it a complex interrelating web of live beings

with an enormous diversity of genetic information. Enough information to specify

every characteristic of every species that now inhabits the planet. The force working

for evolution is an algorithm, a set of instructions that is repeated to solve a problem.

The algorithm behind evolution solves the problem of producing species able to thrive

in a particular environment [63].



 75

Chapter 5 Genet ic Algor i thm

Genetic algorithms, first proposed by Holland in 1975 [64], are a class of computa-

tional models that mimic natural evolution to solve problems in a wide variety of

domains [65]. Genetic algorithms are particularly suitable for solving complex optimi-

zation problems and for applications that require adaptive problem solving strategies.

5.2 Optimization techniques

Placement and routing are two search intensive tasks. Even though agent objects use

knowledge to reduce search time, a great deal of searching is still necessary. A good

proportion of this search time will be spent optimizing the components’ placement in

the layout. In searching for optimum solutions, optimization techniques are used and

can be divided into three broad classes [65], as shown in figure 5.1.

Numerical
techniques

Guided random
search techniques

Enumerative
techniques

Simulated
annealing

Direct
methods

Dynamic
programmingEvolutionary

algorithmsIndirect
methods

Genetic
algorithms

Search techniques

Figure 5.1: Classes of search techniques.

Newton
method



 76

Chapter 5 Genet ic Algor i thm

• Numerical techniques use a set of necessary and sufficient conditions to be satis-

fied by the solutions of an optimization problem. They subdivide into direct and

indirect methods. Indirect methods search for local extremes by solving the usually

non-linear set of equations resulting from setting the gradient of the objective func-

tion to zero. The search for possible solutions (function peaks) starts by restricting

itself to points with zero slope in all directions. Direct methods, such as those of

Newton or Fibonacci, seek extremes by “hopping” around the search space and

assessing the gradient of the new point, which guides the search. This is simply the

notion of “hill climbing”, which finds the best local point by climbing the steepest

permissible gradient. These techniques can be used only on a restricted set of “well

behaved” functions.

• Enumerative techniques search every point related to the function’s domain space

(finite or discretized), one point at a time. They are very simple to implement but

usually require significant computation. These techniques are not suitable for appli-

cations with large domain spaces. Dynamic programming is a good example of this

technique.

• Guided random search techniques are based on enumerative techniques but use

additional information to guide the search. Two major subclasses are simulated

annealing and evolutionary algorithms. Both can be seen as evolutionary processes,

but simulated annealing uses a thermodynamic evolution process to search mini-

mum energy states. Evolutionary algorithms use natural selection principles. This

form of search evolves throughout generations, improving the features of potential

solutions by means of biological inspired operations. Genetic Algorithms (GAs) are

a good example of this technique.

Calculus based techniques are only suitable for a restricted set of well behaved sys-

tems. Placement optimization has a strong non-linear behaviour and is too complex for

these methods. The set of possible layouts for a circuit can be enormous, which rules

out the enumerative techniques.



 77

Chapter 5 Genet ic Algor i thm

These assumptions leave out only the guided random search techniques. Their use of

additional information to guide the search reduces the search space to manageable

sizes. There are two subclasses to this technique, simulated annealing and evolution-

ary algorithms. Both can be used to carry out placement, as shown in [66] and [8].

Agents could use many techniques for placement optimization. Currently it uses the

EvalAgent class to implement a genetic algorithm. However, another classes could

be created to implement other methods, such as Min-Cut, Force Directed or simulated

annealing. They could be used in place of the EvalAgent class, without any other

modification to other parts of the program. A future implementation using simulated

annealing is very probable, but the genetic algorithm was chosen, as the first imple-

mentation, because of its novelty and because it has shown better results than simu-

lated annealing [8].

5.3 The algorithm

A genetic algorithm emulates biological evolution to solve optimization problems. It is

formed by a set of individual elements (the population) and a set of biological inspired

operators that can change these individuals. According to evolutionary theory only the

individuals that are the more suited in the population are likely to survive and to gener-

ate off-springs, thus transmitting their biological heredity to new generations.

In computing terms, genetic algorithms map strings of numbers to each potential solu-

tion. Each solution becomes an individual in the population, and each string becomes a

representation of an individual. There should be a way to derive each individual from

its string representation. The genetic algorithm then manipulates the most promising

strings in its search for an improved solution. The algorithm operates through a simple

cycle:

1. Creation of a population of strings.

2.  Evaluation of each string.



 78

Chapter 5 Genet ic Algor i thm

3. Selection of the best strings.

4. Genetic manipulation to create a new population of strings.

Figure 5.2 shows how these four stages interconnect. Each cycle produces a new gen-

eration of possible solutions (individuals) for a given problem. At the first stage, a

population of possible solutions is created as a start point. Each individual in this pop-

ulation is encoded into a string (the chromosome) to be manipulated by the genetic

operators. In the next stage, the individuals are evaluated, first the individual is created

from its string description (its chromosome) and its performance in relation to the tar-

get response is evaluated. This determines how fit this individual is in relation to the

others in the population. Based on each individual’s fitness, a selection mechanism

chooses the best pairs for the genetic manipulation process. The selection policy is

responsible to assure the survival of the fittest individuals.

The manipulation process applies the genetic operators to produce a new population of

individuals, the offspring, by manipulating the genetic information possessed by the

Population

Evaluation

Selection

Genetic
operations

Offspring

Parents

Scores

Decoded strings

Pairs

Figure 5.2: The “reproduction” cycle.



 79

Chapter 5 Genet ic Algor i thm

pairs chosen to reproduce. This information is stored in the strings (chromosomes) that

describe the individuals. Two operators are used: Crossover and mutation. The off-

spring generated by this process take the place of the older population and the cycle is

repeated until a desired level of fitness in attained or a determined number of cycles is

reached.

5.3.1 Crossover

Crossover is one of the genetic operators used to recombine the population genetic

material. It takes two chromosomes and swaps part of their genetic information to pro-

duce new chromosomes. This operation is similar to sexual reproduction in nature. As

figure 5.3 shows, after the crossover point has been randomly chosen, portions of the

parent’s chromosome (strings) Parent 1 and Parent 2 are combined to produce the new

offspring Son.

The selection process associated with the recombination made by crossover assures

that special genetic structures, called building blocks, are retained for future genera-

tions. These building blocks represent the most fit genetic structures in the population.

11 0 0 01 1 1

1 0 1 1 0 1 0

0 0 0 0 1 0

Parent 1 Parent 2

Son

Crossover point Crossover point

Figure 5.3: Crossover.



 80

Chapter 5 Genet ic Algor i thm

5.3.2 Mutation

The recombination process alone cannot explore search space sections not represented

in the population’s genetic structures. This could make the search get stuck around

local minima. Here mutation goes into action. The mutation operator introduces new

genetic structures in the population by randomly changing some of its building blocks,

helping the algorithm escape local minima traps. Since the modification is totally ran-

dom and thus not related to any previous genetic structures present in the population, it

creates different structures related to other sections of the search space.

As shown in figure 5.4, mutation is implemented by occasionally altering a random bit

from a chromosome (string), the figure shows the operator being applied to the fifth

element of the chromosome.

A number of other operators, other than crossover and mutation, have been introduced

since the basic model was proposed. They are usually versions of the recombination

and genetic alterations processes adapted to constraints of a particular problem. Exam-

ples of other operators are: inversion, dominance and genetic edge recombination.

1 0 1 1 1 1 0

After mutation:

Figure 5.4: Mutation.

1 0 1 1 0 1 0

Before mutation:



 81

Chapter 5 Genet ic Algor i thm

5.3.3 Problem dependent parameters

This description of the genetic algorithms’ computational model reviews the steps

needed to create the algorithm. However, a real implementation takes account of a

number of problem-dependent parameters. For instance, the offspring produced by the

genetic manipulation (the next population to be evaluated) can either replace the

whole population (generational approach) or just its less fitted members (steady-state

approach). Problem constraints will dictate the best option.

Other parameters to be adjusted are the population size, crossover and mutation rates,

evaluation method, and convergence criteria.

5.3.4 Encoding

Critical to the algorithm performance is the choice of underlying encoding for the

solution of the optimization problem (the individuals on the population). Traditionally,

binary encodings have being used because they are easy to implement. The crossover

and mutation operators described earlier are specific to binary encodings. When sym-

bols other than 1 or 0 are used, the crossover and mutation operators must be tailored

accordingly.

A large number of optimization problems have continuous variables. A common tech-

nique for encoding them in the binary form uses a fixed-point integer encoding, each

variable being coded using a fixed number of bits. The binary code of all the variables

can then be concatenated in the strings of the population. A drawback of encoding var-

iables as binary strings is the presence of Hamming cliffs: large Hamming distances

between the codes of adjacent integers. For instance, 01111 and 10000 are integer rep-

resentations of 15 and 16, respectively, and have a Hamming distance of 5. For the

genetic algorithm to change the representation from 15 to 16, it must alter all bits

simultaneously. Such Hamming cliffs present a problem for the algorithm, as both

mutation and crossover can not overcome them easily.



 82

Chapter 5 Genet ic Algor i thm

It is desirable that the encoding makes the representation as robust as possible. This

means that even if a piece of the representation is randomly changed, it will still repre-

sent a viable individual. For instance, suppose that a particular encoding scheme

describes a circuit by the position of each of its components and a pointer to their indi-

vidual descriptions. If this pointer is the description’s memory address, it is very

unlikely that, after a random change in its value, the pointer will still point to a valid

description. But, if the pointer is a binary string of 4 bits pointing into an array of 16

positions holding the descriptions, regardless of the changes in the 4 bit string, the

pointer will always point to a valid description. This makes the arrangement more tol-

erant to changes, more robust.

5.3.5 The evaluation step

The evaluation step in the cycle, shown in figure 5.2, is the one more closely related to

the actual system the algorithm is trying to optmize. It takes the strings representing

the individuals of the population and, from them, creates the actual individuals to be

tested. The way the individuals are coded in the strings will depend on what parame-

ters one is trying to optmize and the actual structure of possible solutions (individuals).

However, the resulting strings should not be too big or the process will get very slow,

but should be of the right size to represent well the characteristics to be optimized.

After the actual individuals have been created they have to be tested and scored. These

two tasks again are very related to the actual system being optimized. The testing

depends on what characteristics should be optimized and the scoring, the production of

a single value representing the fitness of an individual, depends on the relative impor-

tance of each different characteristic value obtained during testing.

5.3.6 Implementation

The Agents system uses the genetic algorithm for the placement optimization task, to

improve components placement before routing. The Placer server exploits topological

relationships between components of the design to create the groups of cells. However

no grid or position coordinates are determined for them. These groups are placed and



 83

Chapter 5 Genet ic Algor i thm

this placement optimized using the genetic algorithm (GA) encapsulated in the Eval

agent object.

As the implementation of the Eval agent object is very dependent upon to the imple-

mentation of the other components of the Placer server, the actual implementation of

this object and the genetic algorithm embedded in it will be left for the placement

chapter.



 84

6 Placement

6.1 Introduction

The Placer agent server undertakes the placement of circuit cells in a defined area. In

chapter 4, the server interface and communication aspects were discussed. This chap-

ter focusses on how the server does the placement itself.

After reading the design information from its client in EDIF format [55], the server

performs the placement of components basically in three steps:

• It forms columns of related transistors. These columns can be formed by MOS tran-

sistors that are connected by their gates, MOS transistors that have their source and

drain interconnected (pass pair) or bipolar transistors that share connections.

• It forms groups joining columns that share drain or source connections. As these

connections are implemented using diffusion layers, the line of transistors, formed

by joining the MOSFET columns, can be laid out in the same diffusion strip [48].



 85

Chapter 6 Placement

• It performs the layout of each cell by placing the groups using genetic algorithm

techniques and calling Router agent servers to route them.

The best placement successfully routed becomes the final circuit. This circuit is then

sent back to the client application, again, as an EDIF description.

6.2 The EDIF description

The server receives, from its client, an EDIF description of the circuit to place and

route and the area available for this design. The design is formed by a list of EDIF

cells containing physical mask layout views and one cell, the main cell, containing a

symbolic view reporting how the other cells are connected. An EDIF cell with just a

physical view looks like:

(cell NMOS

(userData cellFunction NMOS)

(view maskLayout Physical

(interface

(declare inout port (list source drain))

(portImplementation drain (figureGroup NDIFF ...) ...)

...)

(contents (figureGroup POLY ...) ...)))

The userData field defines the type of the cell. The cell type is defined for use in the

Agents system, it is not a type defined in EDIF, thus an userData command is used.

The mask layout view is divided into two parts, the interface and the view’s contents.

In the interface command, the cell’s input and output terminals are declared and their

implementation described. In the contents command, the whole cell is described

including the terminals. This data structure is maintained after the EDIF commands

are interpreted by the Placer server.

The main cell, the one containing the netlist information, looks like:

(cell mainCell

(userData cellFunction main)

(view symbolic Symbolical



 86

Chapter 6 Placement

(contents

(instance PMOS Physical fet1)

(instance stdNode Physical node0)

(instance VSS Physical VSS)

(mustJoin (qualify node0 node)

(qualify fet7 source) (qualify bip2 emiter)

(qualify VDD pad)

)

(mustJoin (qualify node1 node)

(qualify VSS pad)

(qualify fet1 drain) (qualify fet4 drain)

(qualify bip1 colector)

)

...

)))

Again, an userData command defines the type of the cell and there can be only one

main cell per design. Only the content field of the symbolic view is used. It holds two

commands: the instance command, which declares a cell as part of the layout and

gives it a name, and the mustJoin command, which declares what cells are connected

and the terminals used in the connection.

Apart from the main cell there are five kinds of cells:

• Pad cells - They describe the ports used by the design. Ports are the terminals used

by the design as input/output ports. They come already placed.

• MOSFET cells - They describe CMOS field effect transistors. These transistors

will be placed as an array of components.

• Bipolar cells - They describe bipolar transistors (PNP or NPN).

• General cells - They describe any kind of cell.

• ElectricNode cells - They describe all the wiring for a given node. They usually

would come empty and the Router agent server would place all the necessary wires

to route the particular node in them. However they can come prerouted.

Pad cells come already placed because their placement is more closely related to the

global strategy of the leaf cell placement by a silicon compiler (or other type of client),

than to the internal arrangements of the cell design. Having used an object oriented



 87

Chapter 6 Placement

approach, the placer should not take part in activities outside its boundaries, such as

the global silicon compiler’s strategies for leaf cell placement and routing.

Bipolar cells were added having in mind to support BICMOS (Bipolar plus CMOS

transistors) digital designs. General cells are used to include any kind of cells. They

can be used to include small analogue cells, resistors, capacitors, unusually big or

shaped transistors. They give greater flexibility to the placement, but, because of their

possibly unusual shape, they can reduce the quality of the final placement. They

should be used with care.

The server places components’ cells over a design containing the pad cells and any

preplaced cells. The server can accept partially placed or wired layouts for completion.

Figure 6.1 shows a possible input design and the three types of cells to be placed:

CMOS transistors, bipolar transistors and general cells (It is considered that all Elec-

tricNode cells are empty).

6.3 Column formation

The placement strategy is first to form columns of related transistors. Related transis-

tors are: MOS transistors that are connected by their gates, MOS transistors that have

their source and drain interconnected (pass pair) or bipolar transistors that share con-

nections. Then to form groups joining columns of MOSFETs that share drain or source

connections. And finally to perform the layout of each cell by placing the groups using

genetic algorithm techniques and calling Router agent servers to route them.

There are three kinds of agent objects for placement: the Cont agent object controls all

the operations; the Abutted agent object first builds columns of related transistors and

subsequently tries to unite with other Abutted agents to form groups, and the Eval

agent object uses the genetic algorithm (GA) to find a good placement for the groups.



 88

Chapter 6 Placement

The Cont agent coordinates all the actions. It receives the new circuit, after it has been

interpreted from EDIF as a list. It separates the NMOS, PMOS and bipolar transistors

and general cells in different lists and creates the first Abutted agent.

An Abutted agent has two behaviours. When it is created it performs its first

behaviour: it goes to the lists of available cells, in the Cont agent, and grabs the first

cell it can obtain in the following order: NMOS, PMOS, bipolar or general cells. Then

it tries to create the biggest possible column following the rules:

• To make a gate-connected MOSFET column: if it obtained a PMOS transistor, it

tries to obtain other PMOS that have their gate connected to the first one. When

Bipolar transistorsMOSFETs General cells

Vss

Vdd

In Out

Design with pads

Figure 6.1:  Types of cells used by the Placer server.



 89

Chapter 6 Placement

there are no more PMOS transistors, it tries the NMOS. If it begins with a NMOS

transistor, it tries only the NMOS transistors, the PMOS list is already empty.

• To make a pass pair MOSFET column: if the Abutted agent obtained a single

transistor and could not make a column of gate connected transistors out of it, it

tries to obtain other ones that form a pass pair with the first one. A pass pair are two

transistors that have their source and drain interconnected.

• To make a column of bipolar transistors: if all MOSFETs have already been

processed, the Abutted agent obtains a bipolar transistor and tries to find another

that has interconnections with the first to form a column.

• To get a general cell: if all the transistors have been used, the Abutted agent obtains

a cell. They do not try to join cells together, since there can be only one per agent.

These rules are followed in sequence, when an Abutted agent is created it first tries to

grab MOSFETs, then transistors and, at the end, cells. When an agent forms its column

of MOSFETs, or of bipolar transistors or gets a cell, it stops and tries to reproduce. If

there are more cells to be obtained in the Cont agent, a new Abutted agent is created

and it tries to obtain its own set of cells. Abutted agents behave like a culture of bacte-

ria, they keep reproducing until there is no more food.

Figure 6.2 shows the moment when a new Abutted agent is created. There are no more

MOSFETs available (PMOS and NMOS lists are empty). The agent is then attempting

to grab a bipolar transistor from the bipolar list. At least one more agent will be created

to grab the only element of the general list.

6.4 Group formation

When the column creation process finishes, the Cont agent switches the Abutted

agents to their second behaviour. The Abutted agents will now try to pair up with other

agents joining their cells. To pair up, two agents have to share a number of source/



 90

Chapter 6 Placement

drain interconnections. The idea is to join columns of MOSFETs, by either the source

or the drain sides. In this way these MOSFETs can be laid out in parallel strips of dif-

fusion, they can be abutted. Only Abutted agents holding MOSFETs’ columns can pair

up, but not all of them have to pair up. At the end there can be agents holding just one

cell.

The group formation process is performed in cycles controlled by the Cont agent. In

this process only Abutted agents holding columns of MOSFETs are considered. In

each cycle, the Cont agent goes through the list of Abutted agents, exposes each agent

to the others and asks the other agents how well they connect to this agent. Each agent

then creates a report showing its situation relating to the exposed agent. This report

states if a match is possible, how good this match is and details how it should be

ContAgent

Abutted Abutted Abutted Abutted

PMOS NMOS bipolar general
list list list list

Figure 6.2:  Column formation process.



 91

Chapter 6 Placement

implemented. At the end of a cycle, the two agents that have the best connections

between each other are joined. These cycles continue until no agents can be joined or

the quality of the possible connections is too poor.

Figure 6.3 shows the report and joining stages in more detail. During this particular

report stage, agent Abutted #5 was exposed and agent Abutted #8 created a report

about their match. They have two possible connections through nodes 1 and 2. The

joining report has two parts: a list, containing the line’s connection order, and the sides

of the connection. The list contains pairs of connecting lines. In the example from

figure 6.3, the report states that, in a connection between the two agents, two lines will

be joined: line 0 of Abutted #8 will connect to line 1 of Abutted #5 and line 1 of

Abutted #8 will connect to line 0 of Abutted #5. Also it states that the drain side of

Abutted #8 should join the drain side of Abutted #5. Source side means the right

side, and drain side means the left side.

In this particular case, the report was the best one and the two Abutted agents are

joined. As the report states that the two agents should be joined by their left side, and

because any two groups of MOSFETs only can be joined left to right, the group of

MOSFETs belonging to Abutted #5 will be mirrored in relation to the Y axis. After

this transformation, Abutted #5 connection side becomes right and the connection is

possible. To connect each line properly the program uses the connection description

list from the report.

After the grouping of cells has finished, the Cont agent contains a list of Abutted

agents holding groups of cells. It then takes these cells from the agents and puts them

in a list. The Abutted agents are then destroyed. The next step is to place the groups of

cells in the empty design (Top of figure 6.1).



 92

Chapter 6 Placement

6.5 The genetic algorithm placement

Up to now, only topological relationships between the cells of the design have been

exploited to create the groups of cells held by the Cont agent, no grid or position coor-

dinates have been determined for them. This groups will be now placed and this place-

ment optimized using the genetic algorithm (GA) encapsulated in the Eval agent

object.

Abutted #8 Abutted #5
1

12

2

Abutted #8
1 1

2 2

&
Abutted #5

Figure 6.3:  The grouping process.

Column 0 Column 1

Line 1

Column 0

Line 0

Line 1

Line 0

Column 1Column 0 Column 2

Line 0

Line 1

Report: [ [ 0 1 ] [ 1 0 ] ] DRAIN DRAIN

Report template: [ Connection order ] Sides

Report stage:

Joining stage:



 93

Chapter 6 Placement

The inputs for the Eval agent are an empty design and a list holding the groups of cells

to be placed. The empty design is the same received by the server and shown in figure

6.1. The list of groups comes from the Cont agent and it holds three kinds of groups of

cells: arrays of MOSFETs, a list of bipolar transistors and individual general cells (fig.

6.4). The Eval agent has to position them in the empty design in the best possible way.

Before describing the actual algorithm implementation, some steps should be defined

because they are closely related to the system being optimized. There are four main

points to be defined: encoding, genetic operations, evaluation and classification.

6.5.1 Encoding

Each individual solution in the population is represented by a set of numbers and this

representation should be as robust as possible. Figure 6.5 shows an individual and the

chromosome that represents it.

Bipolar list

Array of MOSFETs

General cell

Figure 6.4:  Types of cell groups.



 94

Chapter 6 Placement

Vss

Chromosome: [ 0 FLIP [ 1 0 2 ] 10 12 5 ]  [ 1 NO_FLIP  [ 1 0 ] 8 5 3 ]

Example:

gap

gap
L 0

L 1

L 2 L 0

L 1

Group 1

Group 0

dx0

dx1dy0

dy1

Vdd

In Out

Chromosome: [ ...Group 0 Group 1 Group 2 Group n ]

Group: [ Dx GapFlip flag DyGroup’s lines ]

Group’s lines: [ ]Line 0 Line 1 Line 2 Line n...

Group number

Figure 6.5:  Coding schema.

Actual individual:

Coding structure:



 95

Chapter 6 Placement

The chromosome is not represented by a string, as would be expected, but by a list.

This is done to avoid Hamming cliffs and to enhance robustness. As the top of figure

6.5 shows, the elements of this list represent each group being laid out in the cell, with

the groups laid out in the same order as they appear in the list. For each group there is

another list describing how that particular group will be laid out. This list has the fol-

lowing elements:

• Group number is the position (integer) of the group in the group list, the list that

holds the description of all groups.

• Flip flag is a flag (symbol) that indicates if the group is to be flipped or not, to be

flipped means to be mirrored in the Y axis.

• Line list is a list with the order that the lines in the group should be laid out. Lines

in a group can be freely swapped and will be laid out in the order they appear in the

list.

• Dx represents the distance (integer) between this group and the last group laid out.

• Dy represents the distance (integer) between the group and the Y axis.

• Gap represents the distance (integer) added to either the minimum separation

between PMOS and NMOS transistors in the case of a group holding an array of

them or to the minimum separation between two bipolar transistors in the case of a

group holding a list of bipolar transistors.

With the information provided by the chromosome, the individual, shown in figure

6.5, is laid out on the design, in this case, containing only the pads (Vss, Vee, Input and

Output). Figure 6.6 shows the actual circuit placement.



 96

Chapter 6 Placement

6.5.2 Genetic operations

The way the genetic operations are carried out is dependent upon the chosen encoding

for the genes. The chosen encoding, in this case, was a list and this affects the way

cross-over and mutation are performed.

As figure 6.7 shows, when two individuals mate, their genetic material mix, in this

case the list containing placement information for each group. A parent is chosen ran-

domly to be the main parent, the order of the groups in its chromosome will determine

the order in the offspring chromosome. In figure 6.7, parent 1 was chosen as the

Figure 6.6:  Actual circuit placement.



 97

Chapter 6 Placement

main parent, the order of groups in the offspring reassembles its own, but the actual

group’s placement information came randomly from both parents. Indeed, in this par-

ticular example, only group 3 came from parent 1.

After an offspring is generated, swap and mutation operations can be applied. At the

top level, mutation can be used to swap the position of some groups in the offspring.

Inside each group description, cross-over and mutation can happen. The FLIP flag can

be changed by mutation and the group’s lines can be swapped. The distances Dx, Dy

and gap can be swapped among the groups or just changed.

Cross-over and mutation operations can generate illegal individuals. Illegal meaning

placements that violate design rules. When evaluated they will be classified as “born

dead” individuals and will not be added to the population list. It is not possible, at the

mating stage, to detect all “born dead” configurations, however the ones that produce

out of boundaries placement of cells can be detected and corrected.

To correct them, the program calculates the length of all cells and subtracts it from the

length of the available area for placement. This gives the available free space between

cells. This space is then divided by the number of cells plus one, which gives the aver-

age separation in between the cells and from them to the border of the placement area.

The routine then calculates the space left between the last placed cell in the offspring

Parent 1:

[ G #0 G #2 G #1 G #3 ][ G #2 G #0 G #3 G #1 ]

[ G #2 G #0 G #3 G #1 ]

Parent 2:

Offspring:

Figure 6.7:  Crossover in lists.



 98

Chapter 6 Placement

and the border of the available area. If this value is negative it means that the cells are

overflowing the available area. If this value is too big, it means that all cells are

crowded in one end of the available space (fig. 6.8).

Figure 6.8 shows what the program does to correct the placement. The routine ran-

domly chooses one of the group of cells, then, using the average separation calculated

before as a base value, it randomly takes a percentage of the base value and subtracts

or adds (depending if the cell is overflowing or crowded) this value to the group’s Dx

(at maximum adding or subtracting 50% of Dx). It repeats this operation until the

space left between the last cell and the available area is neither negative nor too big.

Cell #1
Cell #2

Cell #3

Available space for placement

DX1 DX2 DX3 -To Border

Cell #1
Cell #2

Cell #3

DX1 DX2 DX3 To Border

Figure 6.8:  Correction of groups’ placement.

The groups of cells are overflowing the available space, randomly
the DX’s will be reduced by random values. In this particular case,
DX2 lost 40% and DX3 lost 50%:

Available space for placement



 99

Chapter 6 Placement

The same operations are repeated for the Dy and Gap distances, the only differences

being that these operations have to be undertaken for each group of cells and the dis-

tance to be adjusted is the distance from the top of the cell and the top of the available

placement area. In this case Dy and Gap are altered until the cell fits in the space.

6.5.3 Evaluation

The new individuals created should be evaluated to find how good their placement is.

This step is more closely related to the system being optimized than to the algorithm

itself. The best way of doing the evaluation would be by actually routing each place-

ment using the Router agent server. Unfortunately the routing process is slow and

would take too long to evaluate all candidates. In place of full routing a method is used

to estimate the cost of wiring the circuit. The objective of this method is to evaluate

how much a particular placement contributes for the total length of wire and to the

amount of crossing among the wires of the circuits. Figure 6.9 shows the wire connec-

tion as straight lines in a “rat’s nest” fashion, from that projection one can see how

much this particular placement will influence the routing process.

To get a similar effect, the evaluation routine uses the same wiring algorithms, that the

router uses, but it allows crossing over and short circuits to take place and it does not

test for design rule violations. All connections are carried out with the smallest wire

possible, changes of layer, however, are undertaken whenever necessary.

As the evaluation pseudo routing takes place, the cost of the wires is being computed.

The routine that calculates the cost of each wire is the same that is used by the router.

The number of crossings of each new wire with all the old ones, already laid out, is

accumulated. At the end, the evaluation routine has the total cost of the pseudo routing

and the total number of crossings. Each placement will be judged by these two values.

6.5.4 Classification

After evaluation, each placement or “individual” has two values: the total wire cost

and the number of crossings. The whole population of individuals is kept in a list,



 100

Chapter 6 Placement

which is ordered by fitness, the fittest individuals coming first in the list. Every new

individual has to be appended to this list in the appropriate position. There is another

list holding the evaluation values of each individual in the same order as in the popula-

tion list. The classification routine goes through this list, calculating a fitness value

from each individual evaluation value, and comparing it with the new individual fit-

ness. The routine can give different weights to each evaluation value when calculating

the fitness, which can make some characteristics more important than others. After an

individual’s position has been found, the routine appends it and its evaluation values in

the same position to respective lists.

As discussed in chapter 5, the offspring produced by genetic manipulation (the next

population to be evaluated) could either replace the whole population (generational

approach) or just its less fitted members (steady-state approach). The steady-state

approach was implemented here, because the processing time to evaluate each individ-

ual is high, which leads to the use of a relatively small population. The program could

not afford to kill all individuals from one generation to the next. New individuals are

Figure 6.9:  Wiring estimation method.

Vss

Group 1

Group 0

Vdd

In Out



 101

Chapter 6 Placement

then continuously appended to the population list. When the population reaches a pre-

determined maximum number, half of it is killed.

The fitness of an individual, and thus its position in the population list, determines its

probability of reproduction and death. As figure 6.10 shows, as the position of an indi-

vidual in the population list increases, its probability of reproduction decreases and its

probability of death increases. Both probabilities depend solely on the individual’s

position in the list, not on its actual fitness value. The two probabilities vary following

the normal distribution. To generate the random numbers in such a distribution, the

output of a function that generates random numbers between 0 and 1 with equal prob-

ability (r) is used as an argument for the erf function:

, where and

σ is the standard deviation of the distribution.

To find an individual for reproduction or death:

Indreproduction= round((1-Rnumber)*Total), Inddeath= round(Rnumber*Total).

The normal distribution was chosen because it is the distribution used by nature.

Whenever individuals are chosen to reproduce or die one of these two probabilities is

0

P P

0

Probability
of
Reproduction

Probability
of
Death

Population List

0 6 7 8 9 10 11 121 2 3 4 5 n...

Figure 6.10:  Distribution of reproduction and death probabilities.

Rnumber erf
r
σ( )= erf x( ) 2

π( )
e t2− td

0

x

∫=



 102

Chapter 6 Placement

always used. It means that an unfit individual can reproduce and a fit one can die, but

these events have a very small probability of taking place.

6.5.5 The algorithm implementation

Once the four steps, encoding, genetic operations, evaluation and classification, are

defined the actual algorithm implementation is basically that described in Chapter 5.

As stated earlier, the inputs for the Eval agent are an empty design and a list holding

the groups of cells to be placed. When this agent is created it generates four individu-

als by placing then randomly. These individuals are then evaluated and classified and

become the population.

The Cont agent can use the Eval agent’s method run to run a certain number of gener-

ations. This cycle (fig. 6.11) is very similar to the one described in figure 5.2. The main

Population

Evaluation

Selection

Genetic
operations

Offspring

Parents

Scores

Decoded strings

Pairs

Figure 6.11:  The “reproduction” cycle.

Classification

Position



 103

Chapter 6 Placement

difference is the classification stage. This new cycle takes into account the position of

an individual in the population list which determines its probability of reproducing or

dying, not its actual fitness value. This is similar to nature: fitness only gives a better

chance of survival, it does not guarantee it. The stages depicted in figure 6.11 are:

• Selection - Two individuals are chosen to mate from the population. The probability

of an individual being chosen is greater for the ones in the beginning of the popula-

tion list (section 6.5.4).

• Genetic Operations - The genetic material is mixed using cross-over and mutation.

If clones are generated (individuals identical to one of the parents) the process is

repeated.

• Evaluation - The resulting genetic description is translated into a placement and

then evaluated. Placements that are illegal are considered “born dead” and are not

included in the population.

• Classification - The result of the evaluation is classified in relation to the results of

the other members of the population, according to the fitness criteria.

• Population - The offspring enters the population list in its proper position.

The cycle is repeated until a certain number of generations has been tried. This number

of generations is variable, it is determined by the Cont agent when it calls the Eval

agent method run.

6.6 The placement routing cycle

The Cont agent refines the placement of a circuit by doing placement/routing cycles.

First, the Cont agent runs a number of generations in the Eval agent to produce a

placement for the design and then it sends it to a Router agent server. This cycle is

repeated until a Router server produces a fully routed design.

All the communication and resource management of the Router servers is undertaken

by the RouterComm object (fig. 6.12). When it receives a design to route the object

tries to find a free Router server. If there is none it requests a new one from the Broker



 104

Chapter 6 Placement

agent server. When a Router server is available, the RouterComm object sends the

placed design to it. In each cycle, the RouterComm checks if any Router server has

already finished its wiring. If one has and the routing was successful, the completed

design is returned to the client and the Placer server stops. If the routing failed, this

Router server is marked free and can be used for wiring another design.

If the RouterComm object doesn’t have any free Router servers available and the Bro-

ker server refuses to give it a new one, the program stops until a Router becomes avail-

able.

The Placer server finishes, when a design is successfully routed, an error condition

occurs or if it has been trying to route for a number of generations unsuccessfully. Fig-

Placer Broker

Asks a router

Creates

Eval

Router #1

Router #2

RouterComm

Send to router

If one routed

End
Send it to client

New placement

Figure 6.12:  Placement/routing cycle.



 105

Chapter 6 Placement

ure 6.13 shows a placed/wired design ready to be returned to a client application by the

server. If successful the server returns the placed/wired circuit:

(edif shiftreg.cir (design shiftreg ...))

If it fails it returns the statement:

(list sorry)

In both cases the server stops and waits for further commands from the client applica-

tion.

Figure 6.13:  A placed/wired design ready to be sent back to a client.



 106

7 Routing

7.1 Introduction

The Router agent server performs all the circuit wiring in the Agents system. The

Router server interface and communication aspects were discussed in chapter 4. This

chapter focusses on the routing routines used by the server.

The Router server receives, from its clients, circuits in EDIF format [55] with all com-

ponents already placed. These circuits are then routed and returned to the client.

The Router server basically tries to mimic the way human designers use a simple CAD

(Computer Aided Design) system to route circuits. The designer makes all the impor-

tant decisions about design, such as where the wires are going to and about the quality

of the routing. The designer decides if a subnet is well wired or if it needs rewiring (for

instance, because it is blocked). CAD offers the designer a tool to represent and

manipulate the design. It embeds tools to change the way wires are connected and to

calculate important constraints, such as the size of a wire or process rule transgres-



 107

Chapter 7 Rout ing

sions. The designer is in charge of the decision making process and the CAD system

offers the medium and facilities to implement his or her decisions (fig. 7.1).

In the Router server, the designer’s role is carried out by the RouterExpert agent object

and the other agents under its supervision, and the CAD role is carried out by the

Design objects.

7.2 The CAD role

The Design object (DesignCmp) holds the design medium and the methods to analyse

or change it. It carries out the CAD role providing the RouterExpert agent with the

means to collect information about the design and to implement its decisions about the

routing process.

In addition to holding the design data, the Design object has two groups of methods to

performs its other functions: building methods, for changing the design data, and

retrieve methods, for collecting information.

Designer Role: Carried out by
Router and Connect agent objects.

CAD Role: Carried out by Design
objects.

Figure 7.1:  The Designer/CAD metaphor.



 108

Chapter 7 Rout ing

7.2.1 Retrieve methods

The methods in this group collect information about the design. Their search can be

based on a component’s individual characteristic, some spacial relationships among

components or some spacial constraint, such as distance. These methods can return

boolean statements, references to components and spacial information.

For example, there are three methods for searches based on individual characteristics:

The getByNumber and getByReference methods that find a component based on

its number or reference value, and the getByWire method that returns the component

that owns a particular wire.

The two more important spacial relationships are crash and touch. A crash happens

when any section of a new wire breaks any design rule in relation to any section

belonging to any wire already in the design. A touch happens when a proposed wire

section touches any section belonging to any wire in a list, both sections should be in a

wiring layer (poly, metal1 or metal2). The main methods to test the relationships are:

L1

L2

Crash: The layer L2 breaks the
design rule of minimum spacing
from layer L1.

L1

L2

Touch: The layer L2 actually
crosses a wire section belong-
ing to layer L1.

Figure 7.2:  Crash and touch events.



 109

Chapter 7 Rout ing

• The getCrashes methods test if a new wire crashes with any other in the design.

They return true if there is a crash. Optionally they can return a reference list point-

ing to all components (and the wires in them) that crashes with the new wire. These

methods can take a list of areas where not to test for crashes, generally these areas

cover the attachment points of a new wire.

• The getCrashesPointer method (fig. 7.3) tests if a pointer, generally created at

an edge of a wire, representing a wire, that spreads in a defined direction and has

infinite length, crashes with any component in the design. It returns true if there are

any crashes and a list with all wires in the circuit that crashed into it. The list ele-

ments include the component holding the wire, the wire section where the crash

took place and the distance from the vector origin to the crash. This list is ordered

by distance, the closest crash report coming first.

• The getWiringLayersTouchPointer method tests if a pointer with a certain

width and infinite length touches any component in a list. It returns true if there are

W1

W4

W5W2 W3

The pointer P origins in the edge of
wire W1, it is as wide as W1 and it
crashes with W2, W3, W4 and W5.

P

Figure 7.3:  A crash pointer.



 110

Chapter 7 Rout ing

any touches and a list with all wires that touched the vector. Only wiring layers

(poly, metal1 and metal2) are considered. The returned list is ordered by the dis-

tance from the pointer’s origin to the touch point, the smallest first. The list ele-

ments hold the component, the wire, the wire’s section and the distance for each

touching event.

Finally, the following methods return information based on spacial constraints (fig.

7.5):

• The getNetEnvelope method finds a rectangle that contains a net. This rectangle

is used to evaluate the size and how big a net is.

• The getClosestWiringPoints method finds the two closest points between two

subnets.

W1

W4

W5W2 W3

The pointer P begins in the edge of
wire W1, it is as wide as W1 and it
touches just W5.

P

Figure 7.4:  A touch pointer.



 111

Chapter 7 Rout ing

7.2.2 Building methods

The Design object’s second function, which is to implement the designer decisions on

the design, is performed by the building methods. This group of methods adds ele-

ments to the design and can conduct construction tasks that are not complex enough to

demand the help of an expert system. The methods are:

• The changeLayer method finds a wire that takes another wire from one layer to

another. This new wire is usually appended to the old one. First, this method finds

the via geometry for changing the layers and includes finding the via layer type

(Contact or Via) and the minimum sizes of a sandwich of squares from the two lay-

ers and the via in between them (fig. 7.6). This sandwich has to be connected to the

old wire. The routine tries to place the sandwich in various positions around the old

wire end. To speed up the process, a big sandwich is generated covering the total

area where the placements will be tried. Using the method getCrashes, a list

pointing to all components (and wires) that crash with this big sandwich is gener-

Envelope: The rectangle surround-
ing this net represents its envelope.

Net 1
Net 2

Min. Dist.

The closest wiring points between
Net1 and Net2 are the wire seg-
ments S1 and S2.

S1 S2

Figure 7.5:  Envelopes and closest wiring points.



 112

Chapter 7 Rout ing

ated. Only the components on this list will then be tested when the method tries to

place the small sandwich (fig. 7.6).

• The makeConnection method tries to connect two wires. If the end of the first

wire and the point of connection on the second one are from the same layer, the rou-

tine just tries to add a segment connecting the two. If there are crashes it returns

false. If the two connection points are in two different layers, the routine tries to add

a segment from the first wire to near the place of connection. If this wire segment

crashes, smaller ones are tried. At the end of this segment, the routine tries to take

the wire to the same layer of the point of contact in the second wire using the

method changeLayer. If successful, it adds one more segment to connect the two

wires. If there are any obstructions between the two wires the method fails, because

it is not supposed to navigate around obstructions.

Sandwich of layers to make a layer
change. For instance, when chang-
ing from poly to metal1: 1st layer is
poly, via layer is contact and 2nd
layer is metal1.

1st layer

Via layer

2nd layer

Figure 7.6:  Method for changing layers.

The method tries to place the sandwich in four
directions from its original placement position.
Only wires that crashed with the big sandwich
(dotted line) will be tested for crashes.



 113

Chapter 7 Rout ing

• The connectInSameLayer method wires all points that are on the same layer and

can be connected using a straight wire without any layer change. The method is

called for a specific layer. It tests all nodes, trying to interconnect all subnets that

have wires with segments on the target layer. At the early stage of routing the sub-

nets have only the component’s terminals, which are very small wires (just one seg-

ment), and sometimes a small straight wire connecting two terminals. In a latter

stage of routing this kind of extensive search would be too costly.

• The makeDifusionToMetal1 method adds a wire extension to all subnets that

have only diffusion wires to connect them to Metal1. This routine tests all subnets,

from all nodes not yet completely routed, and finds the ones using only diffusion

layers. It then tries to change them to Metal1 using the method changeLayer.

7.3 The Designer role

The Designer role is carried out by the RouterExpert and Connect agent objects. They

are in charge of the decision making process. Their function is to control the way the

routing is undertaken using the facilities provided by the Design object.

The combination of the two agents performs an augmented maze route algorithm.

Maze routing was first described by Moore [67]. Moore routing is performed over a

rectangular grid of cells, with some cells free and others blocked. Basically, the algo-

rithm finds the shortest path between two predefined cells that does not pass through

any blocked cell. It begins at a start cell, repeatedly expanding outwards to neighbour-

ing cells until the destination is reached. When the goal is reached the complete path

can be tracked back to the start point (fig. 7.7).

Maze routing can be easily generalized, the notion of expanding to neighbours works

with any graph, not only with rectangular arrays. The algorithm is almost always

enhanced with a cost function, incorporating factors such as preferred routing direc-

tions and the cost of layers and vias. Instead of expanding uniformly in all directions,

only the most promising, least cost partial path is expanded in each interaction. In



 114

Chapter 7 Rout ing

place of the shortest path, found in the original form of the algorithm, this enhanced

form provides least cost solutions.

Another performance optimization, which can be employed in the algorithm, is expan-

sion directly to the next interesting point [68], where a change in direction or layer is

more likely. This saves times skipping over less interesting parts of the layout and,

more importantly, by eliminating the need to process data at the costly level of pixels,

processing is performed directly on the circuit description held by a Design object.

A point is defined as interesting when it aligns with the goal point, obstacles’ edges or

crosses obstacles’ sides (fig. 7.8). In the case of obstacles, the edge and sides consid-

ered are the ones of the area that overlap the obstacle by a margin. This margin is equal

to the minimum separation between the layers of the obstacle and the layer of the wire

being routed plus half the wire width. In this way, a wire bending in an interesting

point does not break any design rule (fig. 7.8). The agents construct wires to the inter-

esting points and analyse the best possibilities from them. They can turn the wire or

change layers and then try the next interesting point.

Start

Goal

1

2

2

1

3

3

3

2

2

654

654

3

3

65

5

4

4

65

7

7

6

7

7

7

7

0

Figure 7.7:  The basic maze routing.

The Lee algorithm [69] is a classical
example of a maze route. Expansion
is done in all directions and a cost
function, associated with the distance
from start, is associated to each cell.



 115

Chapter 7 Rout ing

7.4 Router expert

The RouterServer object is in charge of the communications with the outside world. It

can interpret EDIF format [55] and the commands accepted by the router. It holds the

RouterExpert agent object that undertakes the real routing. When the RouterServer

object receives a circuit to be routed it reads it into a Design object and passes it to the

RouterExpert agent to carry out the routing. When the routing is finished it converts

the resulting design to EDIF format and sends it back to the client.

When the RouterExpert agent receives a circuit, it first performs some simple routing.

It connects straight diffusion and polysilicon lines and connects all the unconnected

diffusion lines to metal1.

7.4.1 Connect in same layer

The RouterExpert agent uses the Design object’s connectInSameLayer method to

connect points on the same layer which are close to each other. These connections

should lie in a straight line. First, the program tries the points on the diffusion layers

(pdiff and ndiff). Only this type of connection will be routed in diffusion, abutted tran-

Goal

Interesting

Interesting

InterestingCurrent

Current

Current

Alignment with the Goal
point.

Alignment with an obsta-
cle’s edge.

Crossing an obstacle’s
side.

Figure 7.8: Interesting points.



 116

Chapter 7 Rout ing

sistors (transistors on the same strip of diffusion) will be connected this way. After

routing all diffusion links, the program will try to connect polysilicon points. The

placement program tried to align the connected gates of transistors, these will be con-

nected now. If, by chance, the program finds other possible short connections, other

than abutted MOSFETs and aligned gates, they will be routed this way too.

7.4.2 Diffusion to metal openings

As the only allowed type of wiring using diffusion has already been carried out

(mainly for abutted transistors), any remaining unwired diffusion points have to be

connected in metal1. For each unwired diffusion terminal, the Design object’s method

makeDiffusionToMetal1 will be applied to try to extend it into layer metal1 (fig.

7.9). If this change isn’t possible the cell can not be routed and an error condition is

returned.

7.4.3 Main connections

After the basic connections have been completed, the connectGeneral method

wires all remaining connections. The unwired nodes are put in the Routing Nodes

Queue list, ordered by importance and size, smaller nodes coming first. This will help

if any rerouting has to take place later. The connectGeneral method uses the con-

nectNode method to connect all members of this list. From this stage on, only the

wiring layers, polysilicon, metal1 and metal2, will be used for interconnections.

In a Design object, each node has a list of partially routed subnets (routingNets

list). Each list contains at least one wire corresponding to a component terminal. If

none of the subnets was wired together all lists will have just this small wire. If they

have all been wired, the node will have just one list holding all subnets in its rout-

ingNets list.

The connectNode method connects the subnets in a node’s routingNets list. It

tries to connect each net using the method connectSubnet. If the method can not

connect a subnet, the next subnet in the list will be connected and the unconnected



 117

Chapter 7 Rout ing

subnet will be tried again later. The method returns FALSE if not all subnets are con-

nected together.

7.4.4 Connecting a subnet

The subnets connection is based on the interesting points, discussed in section 7.3. The

wiring of a connection is undertaken by the Connect agents by analysing the nearest

interesting points, beginning at the wire origin. A Connect agent is created for each

interesting point. From its analysis of the point, a number of operations can be per-

formed: it can change layers, connect the wire to the destination, create a new piece of

Figure 7.9:  Circuit after straight diffusion and polysilicon connections.



 118

Chapter 7 Rout ing

wire, unwire a blocked path, etc (fig. 7.10). The agent’s goal is to reach a point in the

destination subnet. It can create other agents (reproducing) to analyse other nearby

points of interest. These operations go on until two subnets are finally wired together.

The RouterExpert agent controls the population of Connect agents and the way they

perform the routing. The idea would be to have a population of Connect agents trying

their solutions in parallel. If an individual finds a new interesting point, it reproduces.

If it completes a wire it sends it to the RouterExpert agent. If it has exhausted all its

options, it dies. The RouterExpert would then take care of this “farm”, killing individ-

uals with costly routing and giving more resources to individuals with prospective

wires.

Unfortunately parallelism at this level is not available in BSD Unix (Berkeley System

Distribution) [70], only in the System V Unix [71] using the threads mechanism. But

even in this case, it only would be real parallelism (not just time sharing) if the host

machine had more than one processor. For this reason, a system of list queues is used

to schedule Connection agent’s execution, in a time sharing fashion.

C0 C1

C2 C5

C3 C6

C4

Figure 7.10:  Connect agents probing interesting points.

Connect agent C0 is created at the
origin of the wire, in Subnet #1. It
then creates the agent C1 to ana-
lyse the next interesting point
(Crossing an obstacle’s side). C1
creates C2, C3 and C4 to analyse
further points. The process contin-
ues until C4 finds a suitable connec-
tion to Subnet #2.

Subnet #2

Subnet #1



 119

Chapter 7 Rout ing

7.4.5 The algorithm

The RouterExpert agent’s method connectSubnet controls the process of routing a

subnet. Figure 7.11 shows its data structures, its main constituents are:

• Routing Nodes Queue - This list points to the nodes being routed. When a node is

routed the CurrentRoutingNode pointer is updated. If a node has to be unwired

its position on the list has to be changed and it has to be repositioned after the

pointer.

• AgentsList - This list holds the Connect agents that are waiting to run.

RouterExpert

Agents Queue Agents List

Add Connect agent

Add Connect agent

Best Wire

Try as best wire

Connect

Connect

Connect

Connect

Connect

Connect

Routing Nodes Queue

0 n1 2 3 4 ...

Current

Running

Figure 7.11:  RouterExpert agent data structure.



 120

Chapter 7 Rout ing

• AgentsQueue - This is a list that holds the first Connect agent and all other Connect

agents that ask for nets to be unwired. Agents on this list will be transferred to the

AgentsList when it gets empty.

• Best Wire - This holds the current best wire. Wires are sent in by the Connect

agents when they are running. The variable only keeps the best one.

The main algorithm used by the connectSubnet method is shown in figure 7.12 and

described bellow:

• Lines 1-3: First the method finds the envelope (fig. 7.3) of each subnet being routed.

The routing is carried out from the smaller subnet to the bigger. It is usually easier

to reach a point from a small subnet, e.g. a single terminal, to a bigger one, such as a

Vdd line, than the other way round.

• Lines 4-5: The method finds the closest wiring points (fig. 7.3) between the two

subnets and calculates certain important constants, such as the cost of the minimum

wire connecting the closest wiring points and the average cost of connecting the two

subnets. The average cost is the cost of a straight wire connecting between two

points over a distance that is the average of the biggest and smallest dimensions of

the subnets’ envelopes.

• Lines 6-7: The routine now creates the first Connect agent in order to analyse the

first interesting point, the wiring origin, and appends it to the agentsQueue list. As

long as the agentsQueue is not empty, the algorithm will try to use the agents on

it.

• Line 8: If a Connection agent asks for other nets to be unwired, the nodes of these

nets have to be saved first. As all Connect agents work on the same Design descrip-

tion, to avoid the cost of copying it, the description can not be permanently altered

by them. For this reason any unwired nodes have to be saved before any modifica-

tion takes place.



 121

Chapter 7 Rout ing

• Lines 9-11: The first element in the agentsQueue is put in the agentsList. As

long as the agentsList is not empty, the algorithm runs the agents on it.

• Lines 12-17: The algorithm obtains the first element of the agentsList. If the

wire being routed by this agent is already too costly the agent is killed. The environ-

ment in the Connect agent is set, which means that the agent can initialize any vari-

1 connectSubnet(net1, net2){

2 get each net’s envelope;

3 net1= subnet with smaller envelope;net2= the other one;

4 get closest wiring points for (net1, net2);

5 calculate constraints (such as min. cost and average cost);

6 append to agentsQueue the first Connect Agent;

7 while (agentsQueue not empty) {

8 save nodes being unwired, if any;

9 get the first element of agentsQueue;

10 append first element in agent list;

11 while (agent list not empty) {

12 get first Connect agent in the agent list;

13 if agent’s wire already too costly

14 kill agent;

15 else {

16 set environment in Connect agent;

17 call Connect agent’s run method;

18 reset environment in Connect agent;

19 kill agent;

20 }

21 }

22 recover unwired nodes;

23 if (suitable wire found) empty agentsQueue;

24 if (too many cycles) empty agentsQueue;

25 }

26 if (suitable wire found) {

27 Add wire to current node;

28 unwire the necessary nodes, if any;

29 return TRUE;

30 }

31 return FALSE;

Figure 7.12:  Algorithm used by the connectSubnet method.



 122

Chapter 7 Rout ing

ables or add something to the Design description. The method run is called in the

Connect agent.

• Lines 18-21: When the Connect agent halts and its run method returns, its environ-

ment is reset. This allows the agent to undo any modification to the Design descrip-

tion. The agent is subsequently killed. If the agent has found any new wire, it sent it

back to the RouterExpert agent using the method tryAsBestWire. If it has created

new Connect agents, they were either added to the lists agentsQueue, if they ask

for other nets to be unwired, or to agentsList if they do not ask.

• Lines 22-25: The Router continues until the agentsList is empty. It then restores

any unwired node from the stack. If a suitable wire is found, the process stops. If no

wire is found the cycle continues until there are no Connect agents left in the

agentsQueue.

• Lines 26-31: At the end of this process, if a suitable wire has been found, it is added

to the node being currently wired. If it is necessary to unwire other nodes to make

room for this new wire, these nodes are now unwired and have their position

upgraded in the Routing Nodes Queue. They will be rewired later. If no suitable

wire has been found the order of the subnets is inverted and the process is repeated,

this time from the bigger net to the smaller.

When a Connect agent finds a wire it sends it to the RouterExpert agent using the

method tryAsBestWire. The method will test whether the cost of this wire is

smaller than the current best one (if there is one). If the new one is cheaper, it will

become the new best. The method also tests whether the new wire has a cost very near

the cost of the minimum wire. If so, the search stops.

7.4.6 Rewiring

When the path of a wire is totally blocked by an already routed wire, the program

unwires the old wire to allow the wiring of the new. After that the old wire is rewired.

Unwiring is a very expensive operation. The unwiring of a section of wire can lead to



 123

Chapter 7 Rout ing

the complete unwiring of many nodes. Unfortunately it has to be carried out when pre-

vious wires completely block the path of a new one.

When a Connect object has the path of its wire obstructed by a wire belonging to a

node different from the one it is currently routing, it creates a new Connect agent,

which asks for that wire to be removed, and sends it to the RouterExpert agent. This

new agent is sent to the AgentsQueue (fig. 7.11). The agents in the AgentsQueue

are used only if a wire that does not need any unwiring is not found, or if this wire is

very costly (at least twice the cost for the subnets’ average wire). Because rewiring is

so expensive it is only tried when all agents that do not ask for it (the ones in the

agentsList) have been tried.

When a new Connect agent is added to the AgentsQueue, the program determines

which nodes will have to be unwired as a result of the removal of the wire that is

blocking that particular agent path. The node, that the wire belongs to, and all nodes

wired after it, that share any common area with it, have to be completely unwired.

Nodes sharing areas with these unwired nodes have to be unwired as well. For

instance, if the nodes were wired in the order A, B and C; A had to be unwired and B

occupies an area that overlaps A’s. B will have to be unwired and C will be left intact

only if it shares area with neither A nor B. The Connect agents are added to the

AgentsQueue ordered by the number of nodes that they are asking to be unwired, the

smaller numbers (cheaper ones) coming first.

All this care has to be taken because the wiring of a node reflects in the wiring of the

other nodes connected after it. If only the wire that is blocking a path is taken out,

other wires, in the same node or from other nodes, could have had their shape heavily

influenced by that wire. For instance, they could have changed layers to avoid the

wire, and if this wire is then deleted and rewired, it can now follow another route and

leave an unnecessary change of layer in the design. The only way to ensure that such

situations do not take place is to unwire not only the blocking wire but all wires that

could have had any topological conflicts with it. Some other less “radical” methods,



 124

Chapter 7 Rout ing

such as recursive rerouting [48], would fail when using more than two layers for rout-

ing.

Figure 7.12 shows a possible error due to partial rewiring. The Net #3 wire, left side

of the figure, was fully blocked by Net #1 and Net #2 wires. The program then

removes the piece of Net #1 wire that is blocking the way (marked by dotted lines).

The routing of Net #3 proceeds to completion, and Net #1 is rewired (right side of the

figure). What happens then is that Net #1 rewires the removed piece in another layer,

to cross over Net #2 and Net #3 layers. This leaves Net #2 with a useless piece of

wire (marked by dotted lines), making a bridge over a no-existing obstruction. In this

case, the two nets, Net #1 and Net #3, have to be rewired to avoid the mistake.

After unwiring a node, the RouterExpert moves it from its original position in the

Routing Nodes Queue, to a position after the current node being routed. In this way,

the node will eventually be rewired. To avoid loops where A asks B to be unwired and

Net #1

Net #2

Net #3

Net #1

Net #2

Net #3

Figure 7.12:  Possible error using partial rewiring.

Net #3 wiring is blocked and
marked wire segment is removed to
allow the wiring to proceed.

Net #3 wiring is completed and
Net #1 is rewired using a new layer.
Net #2 is then left with a useless
piece of wire (marked segment).



 125

Chapter 7 Rout ing

then some time later, when B is being rewired, it asks A to be unwired, a node that

unwires another during its routing, can not be unwired.

7.5 Connection object agent

The Connection agent is at the core of the routing process, it carries out the actual rout-

ing of the subnets. It is created to analyse interesting points. It finds the next interest-

ing points, extends its wire to reach them, and creates new Connection agents to

analyse them. If it finds a connection with the target subnet, it extends its wire to it and

proposes it as the best wire to the RouterExpert agent.

When a Connection agent is created it receives data from its parent about its “mis-

sion”. This data includes: where the Connection agent is in the design, where it should

go and the wire segment it already holds. The agent then remains dormant, either in

the RouterExpert’s agentsQueue or agentsList, until the RouterExpert runs it.

When the Connection agent begins to run, it first checks out its environment and finds

out in what direction the target point for its wire is. With this information it plans

which of its four operators will be activated first. It feeds them into the Options list, a

list that holds operators to be applied, and applies the operators in the list until it is

emptied. The applied operators can trigger other operators to be applied (adding them

to the Options list). As a result of the operators actions, the agent can extend its wire

to other interesting points, create new Connect agents and propose new best wires to

the RouterExpert agent. When the agent has tried all possibilities (it emptied the

Options list), constrained by its environment and knowledge base, it halts and its

run method returns.

7.5.1 The Connect agent operators

The Connect agent expert applies four operators to probe its design options. The most

important is the Change Layer operator, which is the only one to do the final connec-



 126

Chapter 7 Rout ing

tion to the target net. This operator will be introduced in a separate section, the other

three are:

• Change Layer - It changes the wire layer to the one specified. It basically uses the

method changeLayer from a Design object to make the change. On failure it just

returns the message “can’t change”.

• Go to XY - It tries to extend the current wire for a specified distance in a specified

direction. After changing the wire’s direction it finds the dimensions of the wire’s

section that should be added and uses the Design object method getCrashes to

test if the new section fits in place (figure 7.13, left). In case of failure it returns

“can’t go”.

Before

After

Operator Goto XY: A new piece of
wire is added covering a given dis-
tance on the vector’s direction.

Before

Operator Go Round: A stretch of
wire is added extending it up to the
edge of an obstacle.

After

distance

Figure 7.13:  Operators Goto XY and Go Round.



 127

Chapter 7 Rout ing

• Get Round - It tries to go round a specified obstacle in a specified direction. The

direction should be parallel to one side of the obstruction. The operator will look for

an interesting point: the place where a pointer, which has its origin at the current

wire’s end and points parallel to the specified direction, aligns with the obstacle’s

edge (plus a separation margin). It will then find the dimensions of a corresponding

wire segment which would fit from the end of the wire to the interesting point and

will use the Design object getCrashes to test if this new section fits (figure 7.13,

right). In case of failure it returns “can’t get”.

If successful all three operators add the new section to their wires and create a new

Connect agent to work on this new interesting point. When they create new Connect

agents they send them to the RouterExpert to the agentsList. They do not create

agents that ask for nets to be unwired. If unsuccessful all operators return messages

that can be used by the Connect agent to trigger the activation of other operators.

7.5.2 The Change Direction operator

The Change Direction operator is Connect agent’s most important object because it

probes the space in defined directions, looking for a connection in the target net or for

obstructions. It gathers information that can be used to activate other operators.

When this operator is used it receives a pointer with the direction it should probe into,

its vector direction. It then uses the Design object method getWiringLayer-

sTouchPointer (fig. 7.3) to test if a pointer, with the same width and layer type as its

last wire segment and pointing in its vector direction, touches any wire in the target

subnets (or any other subnet belonging to the same node). If the result of this test is

negative, the operator uses the Design method getCrashesPointer, to detect any

crash in the operator’s vector direction. If there is a crash the operator will add to the

Options list the operator Goto XY in the crash’s direction up to the crash’s point edge

(fig. 7.14, middle). If the operator’s vector aligns with the Goal point (fig. 7.8, left) it

adds another operator Goto XY to the Options list, to add a new segment extending



 128

Chapter 7 Rout ing

the wire up to the alignment point (fig. 7.14, left). The operator returns the message

“No touch”.

If there is a touch in one of the target subnets the operator uses the Design object

method makeConnection to try to make a connection. If there is a connection, the

resulting wire is sent to the RouterExpert agent as a possible best wire (fig. 7.14,

right).

If there is no connection the operator uses the Design method getCrashesPointer,

to detect any crash in the operator’s vector direction. If there are no crashes it returns

the message “Can’t make connection” and, as before, if the operator’s vector aligns

with the Goal point (fig. 7.8, left) it will add an operator Goto XY to the Options list.

If there are crashes the operator tries the following series of operations to overcome

the obstructions between its position and the target subnet:

• Reroute - It creates a new Connect agent that asks for the obstructions to be

unwired and sends it to the RouterExpert agentsQueue list.

Goal

Goal

Obstruction

Goal

No touch and no obstruction:
If possible, add a Goto XY to
the point aligned to the Goal.

No touch and obstruction: Add
a Goto XY to the point of
obstruction.

Touch and no obstruction:
Make a connection to the
Goal point.

Figure 7.14:  Operator Change Direction in action.



 129

Chapter 7 Rout ing

• Get Round - If the obstruction is very close to the point were the Connect agent is

in the design, it will add operators Get Round to try to pass around the obstruction

(fig. 7.15, left). It will return the message “Full blocked”.

• Goto XY - If the obstruction is within a certain distance from the Connect agent, it

will add an operator Goto XY to get close to the point of obstruction (fig. 7.15, mid-

dle). It will return the message “Blocked”.

• Goto goal alignment - If the goal alignment with the operator’s direction vector

occurs before the obstruction, it will add a Goto XY operator to get to the point of

alignment (fig. 7.15, right).

If the operator Change Direction manages to make a connection it returns the mes-

sage “Success”.

Goal

Obstruction

Get Round: Get round obstruc-
tion that totally blocks wire.

Goto XY: Goto near obstruc-
tion that blocks wire.

Goto goal alignment: Goto the
goal alignment, Goal #2 is
another subnet in the same
node as Goal #1.

Goal

Obstruction

Goal #1

Obstruction

Goal #2

Figure 7.15:  Change Direction operator touch blocked cases.



 130

Chapter 7 Rout ing

7.5.3 The general operation

In the Connect agents all the wire building and interesting points analyses take place

when the operators are applied. Operators are applied from the Options list. One way

of adding operators to the list is through the operator Change Direction, as

explained in the last subsection.

The other way, as explained earlier, is when the Connect agent begins to run and sur-

vey its environment. The operators chosen, to be added to the Options list, depend

mainly on the last operation performed by the parent of the Connect agent prior to its

creation. For instance, if the last action was an operator Goto XY to approach a

obstruction, Get Round operators will be added to the Options list to try to over-

come the obstruction.

In addition to any operator dictated by the surrounding environment, on all occasions,

the algorithm will add to the Options list: Change Layers operators to the agent’s

wire adjacent layers (for instance poly to metal1), and at least two Change Direc-

tion operators going each to one of the possible directions (north, south, east and

west).

The rules in the Connect agent knowledge base try to strike a balance between the

number of particular cases they take into consideration and the likelihood of any of the

particular cases leading to a perfect wire. Here, some examples of the special circum-

stances the knowledge base analyses have been illustrated, but there are others. Many

more will be added as the program matures.

In summary, the basic behaviour of each Connect agent is to try to extend the wire it

has inherited from its parent. This continues until no operators are available in the

Options list. The agent’s job is to try all reasonable possibilities for expanding the

wire. The task of the RouterExpert agent is to restrain the Connect agents, promoting

the ones that found a good path, in such a way that the program finds a good solution

in a reasonable amount of time.



 131

Chapter 7 Rout ing

The interaction of these two types of agents creates the final routing, as shown in fig-

ure 7.16. This routing is subsequently sent back to the Router server’s client. Similar

to the Placer server, the Router on success sends back the design, as an EDIF com-

mand, otherwise it sends the message (LIST SORRY).

Figure 7.16:  Completely routed circuit.



 132

8 Results

8.1 Introduction

In this chapter some of the results obtained using the Agents system are shown and

discussed. Circuits using two very different fabrication process were generated, to

show process independence. The first fabrication process, from reference [72], is the

Orbit 2 µm process from Orbit Semiconductors Inc. Sunnyvale, California. Orbit is a

BICMOS 2 µm double metal double poly process. Its rules can be found in reference

[72] colour plates 3 to 6.

The second fabrication process is from ES2 - European Silicon Structures, it is a

CMOS dual metal layer 1.5 µm process. This process does not have specific p-diff and

n-diff layers. The p-diff and n-diff layers used in the circuits were formed, respec-

tively, by the intersection of the Active Area layer with the P+ Implant layer and by the

intersection of Active Area layer with N+ Implant layer. The process rules for the p-

diff and n-diff layers where derived from the ones for Active Area, P+ Implant and N+

Implant layers. The conversion of layouts using the p-diff and n-diff layers back to the

ES2 original layers is straightforward, p-diff and n-diff convert direct to Active Area



 133

Chapter 8 Resul ts

and should be overlapped by, respectively, a layer of P+ Implant or N+ Implant. This

conversion however is not yet carried out by the program.

The following examples are of two cells, the first a BICMOS two input nand gate and

the second a CMOS D latch. They are used, as well, in the benchmarks to test the pro-

gram scalability.

8.2 The BICMOS nand gate example

The first example circuit, shown in figure 8.1, is a BICMOS two input nand gate. This

circuit comes from reference [72] colour plate 8(a). Figure 8.2 shows the manual lay-

out for the circuit from the reference’s colour plate 8(a).

Figures 8.3 and 8.4 show two of the layouts generated for the nand gate. In the top lay-

outs all layers are shown, in the bottom ones the metal2 layer has been made hollow to

Vss Vss

Vdd

Out

T1

T2

N2

N1

P1 P2

N3

N4

N5

A

B

Figure 8.1:  The BICMOS nand gate circuit.



 134

Chapter 8 Resul ts

allow a better view of the other layers. As the Agents system relies on a genetic algo-

rithm to do the placement, and this algorithm works with random changes, each time a

new placement/routing of a circuit is done it may be slightly different. For this reason

two circuits are shown as examples. The two generated layouts are slightly different

but have a similar quality.

In these two examples (fig. 8.3 and 8.4), the two generated layouts are very similar to

the one carried out manually (fig. 8.2). The generated layouts are just about 7% bigger

than the manual. They have similar metal1 wire lengths to the manual layout but use

extra connections in metal2. They can be generated faster than the manual one (58 sec-

Figure 8.2:  BICMOS nmos gate handmade layout.

B

Vss

A

Out

Vdd

n-well p-diffusion metal1

buried n+ n-diffusion contact

p-base poly



 135

Chapter 8 Resul ts

Figure 8.3:  First generated layout for the BICMOS nand gate.

Vdd

Vss

B

A

Vdd

Out

Vss

Vdd

Vss

B

A

Vdd

Out

Vss



 136

Chapter 8 Resul ts

Figure 8.4:  Second generated layout for the BICMOS nand gate.

Vdd

Vss

B

A

Vdd

Out

Vss

Vdd

Vss

B

A

Vdd

Out

Vss



 137

Chapter 8 Resul ts

onds). This result could be improved by doing more search during the routing process

or by improving the quality of the rules in the Connect agents (making them more effi-

cient).

8.3 The CMOS D latch example

The CMOS D latch example circuit is shown in figure 8.5. This circuit comes from

reference [73] page 327. Figure 8.6 shows the manual symbolic layout for this circuit

from page 327; unfortunately the book has only a symbolic layout for this circuit, not a

mask level one.

Figure 8.7 shows two of the layouts generated for the D latch. Again, as every time a

circuit is generated by the Agents system it may be generated slightly different, two

circuits were generated to show some of the possible variations between runs.

Vss Vss

Vdd

N3

P1

N4

N5

P2

P4

P5P3

N1

N2

Vss

D Q

clk

clkclk

clk

Figure 8.5:  The D latch circuit.



 138

Chapter 8 Resul ts

This latch layout is very interesting because it is a small but tricky layout. In the BIC-

MOS nand gate, the generated layouts were very similar to the handmade one, in the D

latch case they are different. The handmade symbolic layout (fig. 8.6) was imple-

mented in just two strips of diffusion (one pdiff and one ndiff), but the generated ones

(fig. 8.7) both needed four strips of diffusion (one pdiff and three ndiff).

The trick is the crossing of the clock signals, shown in the symbolic layout (fig. 8.6).

The rules in the Abutted agents can not detect this kind of transistor alignment during

the column formation process. Unable to do the same kind of crossing, the generated

layouts had to use more strips of diffusion making their solution more complicated and

around 15% bigger than the manual one. Nevertheless, the generated layouts are still

of a reasonably good quality.

Adding rules specifically to detect this kind of transistor alignment in the Abutted

agents, should solve this problem.

D

clk clk
Vss

Q

Vdd

Figure 8.6:  Latch symbolic layout.

p-diffusion

metal1

n-diffusion

contact

poly



 139

Chapter 8 Resul ts

Figure 8.7:  Two generated layouts for the CMOS D latch circuit.

Vdd

Vss

clk

D

Vdd

Out

Vss

clk

clkclk

Vdd

Vss

clk

D

Vdd

Out

Vss

clk

clkclk



 140

Chapter 8 Resul ts

8.4 Running distributed and scalability

To test Agents system’s ability to run distributed over a network and its scalability (its

ability to take advantage of the computational resources available), the layout of the

two circuits, shown in sections 8.2 and 8.3, were generated ten times in each of the fol-

lowing computer configurations:

• PC - A 486 DX2 66Mhz PC with 16 megabytes of memory, running Linux (A Unix

System V operational system). This configuration had four to two Router servers set

up.

• One workstation - A Sun Sparc 5 workstation with 32 megabytes of memory, run-

ning SunOs (A BSD Unix operational system). This configuration had four Router

servers set up.

• Three workstations - Two Sun Sparc 5 and a Axil230 workstations (a Sun Sparc

10 clone), all running SunOs (A BSD Unix operational system). This configuration

had six Router servers set up, two on each workstation.

• Eight workstations - Two Sun Sparc 5, two Sun IPX, three Sun IPC and an

Axil230 Workstation, all running SunOs (A BSD Unix operational system). This

configuration had ten Router servers set up, two on each Sparc 5 and Axil230 work-

stations and one on each IPX and IPC workstations.

In all cases the machines run the same software, the four servers (Placer, Router, Data-

base and Broker). In the case of the PC configuration, the servers were compiled using

Gnu gcc version 2.5.8 and, in the workstation configuration, Gnu gcc version 2.6.2

was used. When running Agents on more than one computer, one computer ran the

Placer, Database and Broker servers and all of them ran Routers. The interconnected

machines were using an Ethernet network with a bandwidth of 10 megabytes/second

and TCP/IP Internet protocol. Table 8.1 shows the results of the tests, all the times are

in minutes and seconds. For each circuit there are two time values for each computer



 141

Chapter 8 Resul ts

configuration: first means the time the program took to generate the first layout, and

average means the average interval between the subsequent layout generations.

The values in table 8.1 can not be seen as precise values for the performance of the

program in the various computer configurations. Precise execution time is dependent

on what tasks other users were doing on the networked machines, at the same time as

this benchmark was running, and on the traffic load on the network. Nevertheless, if

the network is not having any other big changes in its workload during the test, the

results can reasonably reflect the program scalability (making use of the extra comput-

ing power available to it).

As one can see from table 8.1, the Agent system is able to run faster as the computing

resources available to it increase. The PC times mainly show that the program can run

on such a configuration. Scalability begins to show from one to three workstations,

when there is a big increase in performance (with proportional reduction in execution

time) as the result of extra power available to the program. From three to eight work-

stations there is a more modest increase in performance, this can be attributed to two

causes: either the extra workstations (3 Sun Sparc IPC and 2 IPX) did not add that

much power compared to the three already doing the work or the degree of power

already used to crack these two particular cases was already near saturation point. For

any parallel problem, there is an optimum number of processors to solve it, and adding

more processors does not decrease execution time significantly.

PC
One
workstation

Three
workstations

Eight
workstations

BICMOS first
nand gate average

4:07

0:57

2:12

0:40

1:17

0:22

0:58

0:20

CMOS first
D latch average

9:48

5:39

2:42

4:51

3:27

1:01

3:11

1:00

Table 8.1:     Agents system execution times.



 142

Chapter 8 Resul ts

Vss Vss

Vdd

Out

T1

T2

N2

N1

P1 P2

N3

N4

N5

A

B

R1

Figure 8.8:  BICMOS nand gate with a pull-up resistor.

Figure 8.9:  Generated layout of the nand gate with pull-up resistor.

Vdd

Vss

B

A

Vdd

Out

Vss



 143

Chapter 8 Resul ts

8.5 Flexibility

The Agents system is flexible in regard of the kind of circuits it can place and route.

The first example of this flexibility is its capacity to accept small analogue cells inside

digital circuits. Figure 8.8 shows the BICMOS nand gate circuit with an added resistor

on its output and figure 8.9 shows the generated layout for this circuit.

The second example is the same CMOS D latch circuit, shown in figure 8.5. This

example shows the Agents system capacity to tackle novel layout styles. This time,

the latch was generated using a layout style, similar to the one proposed in [74], where

Figure 8.10:  CMOS D latch with central power lines.

Vdd

Vss

clk

D

Vdd

Out

Vss

clk

clkclk



 144

Chapter 8 Resul ts

the power lines run through the middle of the cell, in opposition to the top and bottom

sides, usual in more traditional styles. Figure 8.10 shows the generated layout.



 145

9 Conclusion

The objective of this concluding chapter is to provide an overview of the Agents sys-

tem, to analyse some useful development opportunities in its design and to offer some

suggestions about how future research on the topics related to it could be carried out.

9.1 Overview

The three key issues affecting the design of the Agents system were flexibility, inno-

vation and speed. It was decided that the first two, flexibility and innovation, were

going to be more important. There was an emphasis on a flexible solution, that could

offer more freedom of design, by using recent new ideas, such as software compo-

nents.

9.1.1 Flexibility

In the Agents system, flexibility is mainly delivered to the user as a richer set of lay-

out options. As shown in chapter 8, the system can generate layout for BICMOS and

CMOS circuits, can mix small analogue cells with a digital design and has fabrication



 146

Chapter 9 Conclusion

process independence. The system can, as well, tackle unusual layouts, such as the

ones with central power lines.

Flexibility at performance level was obtained using scalability, the quality of a pro-

gram to adapt to the resources of the hardware it is running on. As table 8.1 showed,

the Agents system can run using just the resources of a single PC computer, or it can

run on powerful workstations. It can run on just one machine, for example a Sun Sparc

workstation, or, if more power is made available to it by adding more machines

through a network, the program can use the extra resources to improve performance

proportionally. This scalability was achieved mainly by the use of the client-server

model.

Portability measures how easy it is to port a program to a new environment. Currently,

Agents runs on two different computer architectures: the Intel 386 family (486 and

Pentiun machines) and the Sparc family (Sun and Axil workstations). And on two dif-

ferent flavours of Unix: the System V family (Linux and Solaris 2.X) and the BSD

family (SunOs 4.X). Portability and the use of a combination of client-server commu-

nication with a standard circuit description language (EDIF) makes the program easy

to integrate to other systems.

9.1.2 Innovation

The main conceptual innovation brought into the Agents system is the software

agents concept: the division of the system into software components that can work

independently, but together, to solve cooperatively a problem.

The Agents system shows that this idea works at the system level, in the four servers,

and at a program level, where the agent objects are used. Agents shows that complex

behaviour can come from the interaction of simple entities working together. In addi-

tion, the system successfully uses the genetic algorithm to generate layout.



 147

Chapter 9 Conclusion

9.1.3 Speed

The Agents system did not aim for high speed and did not attempt to be particularly

fast. Flexibility and innovation were considered more important issues than speed dur-

ing the program’s design.

Despite not being designed to be fast, Agents is not a particularly slow system. It has

been shown that if speed is really an issue for a particular application, the program can

scale up to allow speed increases by using more computer power. More hardware can

buy extra speed.

9.2 Development opportunities

The Agents system can not be considered a finished application as yet. It is still at an

alpha version stage. There is work to be done to get the program to a commercial level.

There are, as well, points that offer opportunities for further development:

• During the development of Agents, to reduce the program’s complexity, and thus

make it manageable by just one coder, some compromises had to be made. This

affected especially the program’s speed. The routines that were simplified in this

way should now be revised and faster versions adopted.

• The bugs still present in the program have to be fixed. Parallel programs are more

difficult to debug them serial ones. The use of the genetic algorithm, with it random

components, makes things even worse. No large program, however, is bug free, but

an acceptable level has to be achieved.

• The genetic algorithm is very susceptible to its parameters, such as cross-over and

mutation rates. These parameters were adjusted, but a finer adjustment may be nec-

essary to improve performance a bit further.

• The version of EDIF used by the program is rather old, it should be upgraded at

least to the popular version 2.0.0. The servers should be upgraded to use full KQML



 148

Chapter 9 Conclusion

(Knowledge Query and Manipulation Language) language and not just a subset of

it.

Apart from these changes, the system has to be used. That is the best way of finding

bugs and getting feedback from the users for new improvements. These changes do

not affect the basic structure of the program. They are expected in a system moving

from alpha version to a full commercial version.

9.3 Future research

The development of the Agents system sparks a number of questions. Software agents

is a new but booming field, as many companies try to develop it, and many important

questions will have to be solved. Software agents usually rely on parallel systems (dis-

tributed or not) and, even more important, parallel systems are becoming main stream

in the computer market. These fields are bound to be hot areas of research in the next

few years.

Connected specifically to the Agents system there are some topics that should be of

interest to the future development of layout generation programs, as well as to

researchers studying software agents or parallel distributed systems:

• The Agents system is not able to learn. Any future improvement in its abilities to

layout circuits has to be achieved by manually adding new rules to it. A number of

schemes for learning could be tried out.

• The agent objects, used by Agents system, have a good degree of fine granularity

parallelism in them. They are not complex enough and too small to justify running

as servers, but many of them would be ideal to run as threads (small lightweight

processes that share the same area of memory) on a parallel machine. The type of

parallel machine best suited to run this kind of program, a machine with many proc-

essors running a symmetrical multiprocessor operational system (such as Solaris



 149

Chapter 9 Conclusion

2.X or Windows NT) will get more and more common in the near future. This

makes this kind of development very interesting.

• New algorithms for search, like the bidirectional search algorithm [75] and other

specific parallel algorithms could be tried. Another option is to use simpler engines

to search the layout possibilities. They would be modelled after the artificial ants

constructed by Jefferson from UCLA [76]. In this program, small finite state

machines (the ants) learn how to successfully traverse a poor marked trail using

genetic algorithm. The better an ant can negotiate its way through the trail, the more

it reproduces. The ant’s chromosome hold information about how each stimulus

makes the ant change its behaviour and thus negotiates each step of the trail. A sim-

ilar finite state machine could be used to negotiate which paths the router tries first,

based on the environment around them.

• Integrating and debugging parallel systems is a field of research on its own. The

Agents development would profit very much of any development in this area. The

system already uses some structures to prevent bugs. These structures test the data

consistency in the beginning of many routines. They do not affect the programs per-

formance, because they are not compiled into the final version, a compile flag takes

them out. For this reason, they can do quite a lot of testing to ensure data integrity

and that bugs are found as near as possible to the place where they are being gener-

ated. This kind of debugging techniques, added to servers that monitor other servers

behaviour, such as the two auxiliary servers used by Agents (the Debug and the

Graphic servers), could greatly help to tackle integration and debugging of parallel

systems.

• The philosophy that competence should emerge out of the collective behaviour of a

large number of relatively simple entities is used in many other behaviour-based

systems, such as Mobots [38]. But how to discover which simple behaviours will

add up to make the complex behaviour one is after? The current method is trial and

error, but a better one could be found.



 150

Chapter 9 Conclusion

The Agents system has demonstrated that a distributed system based on software

agents working together can generate flexible layout. It has shown that a program like

this can exploit the new trends in mainstream computer hardware, such as distributed

processing, and, finally, it poses many new questions that should lead to interesting

research in the future.



 151

References

[1] J. Kim and J. McDermott, “Computer Aids for IC Design”, IEEE Software, March

1986, pp. 38-47.

[2] P.W. Kollaritsch and N.H.E. Weste, “TOPOLOGIZER: An Expert System Trans-

lator of Transistor Connectivity to Symbolic Cell Layout”, IEEE J. Solid-State

Circuits, vol. SC-20, June 1985, pp. 799-804.

[3] N. West, “MULGA - An Interactive Symbolic Layout System for the Design of

Integrated Circuits”, Bell. Syst. Tech. J., vol. 60, No 6, part 1, July-August 1981,

pp. 823-857.

[4] Y-L.S. Lin and D.D. Gajski, “LES: A Layout Expert System”, IEEE Trans. Com-

puter-Aided Design, Vol. 7, August 1988, pp. 868-876.

[5] H.H. Ahmad and R.J. Mack, “AREAL: Automated Reasoning Expert for Ana-

logue Layout”, Proc. European Design and Test Conference, EDAC, ETC and

EUROASIC, 1994 IEEE Computer Soc. Press, pp. 659.



 152

References

[6] R.L. Rivest, “The “PI” (Placement and Interconnect) System”, Proc. 19th Design

Automation Conference, 1982 IEEE, pp. 475-481.

[7] J. Soukup, “Circuit Layout”, Proc. of the IEEE, Vol. 69, No. 10, October 1981,

pp. 1281-1304.

[8] R.M. King and P. Banerjee, “ESP: Placement by Simulated Evolution”, IEEE

Transactions on Computer Aided Design, vol. 8, no. 3, March 1989, pp. 245-256.

[9] C. J. Poirier, “Excellerator: Custom CMOS Leaf Cell Layout Generator,” IEEE

Transactions on CAD, Vol.8, No.7, July 1989, pp. 744-755.

[10] Y-C. Hsieh, C-Y. Hwamg, Y-L. Lin, and Y-C. Hsu, “LiB: A CMOS cell com-

piler,” IEEE Transactions on CAD, Vol.10, No. 8, August 1991, pp. 994-1005.

[11] Y-L. Lin, Y-C. Hsu and F-S. Tsai, “SILK: A Simulated Evolution Router”, IEEE

Trans. Computer-Aided Design, Vol. 8, October 1989, pp. 1108-1114.

[12] Z. Mossa, M. Brown and D. Edwards, “An Application of Simulated Annealing to

Maze Routing”, Proc. European Design Automation Conference, September

1994, Session D-22, SIGDA Publications on CD-ROM Compendium 1994-

ACM Press.

[13] G. A. Pascoe, “Elements of Object-Oriented Programming”, BYTE Magazine,

August 1986, pp. 307-316

[14] R. Comerford, “How DEC developed Alpha”, IEEE Spectrum, Vol. 29, No. 7,

July 1992, pp. 26-31.

[15] T. Thompson, “Power PC performs for less”, BYTE Magazine, August 1993, pp.

56-74.

[16] C-Y. Hwamg, Y-C. Hsieh, Y-L. Lin, and Y-C. Hsu, “An Efficient Layout Style for

Two-Metal CMOS Leaf Cells and Its Automatic Synthesis,” IEEE Transactions

on CAD, Vol. 12, No. 3, March 1993, pp. 410-424.

[17] M. Srinivas and L.M. Patnaik, “Genetic Algorithms: A Survey”, IEEE Computer,

Vol. 27, No. 6, June 1994, pp. 17-26.



 153

References

[18] D.A. Moreira and L.T. Walczowski, “Automated Placement for a Leaf Cell Gen-

erator”, ISCAS 94, Proceedings of the IEEE International Symposium on Circuits

and Systems, June 1994, vol. 1, pp 117-120, London.

[19] D.A. Moreira and L.T. Walczowski, “A Leaf-Cell Generator for Silicon Compil-

ers”, ACM OOPS Messenger, Vol. 6, No. 3, July 1995, pp.50-51.

[20] I. Jacobson et al., Object-Oriented Software Engineering, ACM Press and Addi-

son-Wesley, Reading Mass., 1990.

[21] G. E. Peterson, Tutorial: Object-Oriented Computing, IEEE Computer Society

Press, 1987.

[22] L. Ledbetter and B. Cox, “Software-ICs”, BYTE Magazine, June 1985, pg. 307-

315.

[23] B. Stroustrup, The C++ Programming Language, Addison-Wesley, Reading

Mass., 1991.

[24] N. Barkakati, Object-Oriented Programming in C++, SAMS, Carmel Indiana,

1991.

[25] N. Barkakati, X Window System Programming, SAMS, Carmel Indiana, 1991.

[26] S.B. Lippman, C++ Primer, Addison-Wesley, Reading Mass., 1989.

[27] A. Goldberg and D. Robson, Smaltalk-80: The Language and its Implementation,

Addison-Wesley, Reading, Massachusetts, 1983.

[28] S. Hook, Objective-C Reference Manual, Version 3.0, CT Productivity Products

International, December 1984.

[29] B. Meyer, Eiffel: The Language, Prentice Hall, 1992.

[30] S.E. Keene, Object-Oriented Programming in Common Lisp: A Programmer’s

Guide to CLOS, Addison-Wesley, Reading, Massachusetts, 1989.

[31] M.R. Genesereth and S.P. Ketchpel, “Software Agents”, Communications of the

ACM, Vol. 37, No. 7, July 1994, pp. 48-53, 147.



 154

References

[32] A. Newell, Unified Theories of Cognition, Harvard University Press, Cambridge

Massachusetts, 1990.

[33] J.W. Smith and T.R. Johnson, “A Stratified Approach to Specifying, Designing,

and Building Knowledge Systems”, IEEE Expert, vol. 8, no. 3, June 1993, pp. 15-

25.

[34] R.V. Guha and D.B. Lenat, “Enabling Agents to Work Together,” Communica-

tions of the ACM, Vol. 37, No. 7, July 1994, pp. 127-142.

[35] G.R. Yost, “Acquiring Knowledge in Soar”, IEEE Expert, vol. 8, no. 3, June

1993, pp. 26-34.

[36] D.M. Steier, R.L. Lewis, and J.F. Lehman, “Combining Multiple Knowledge

Sources in an Integrated Intelligent System”, IEEE Expert, vol. 8, no. 3, June

1993, pp. 35-44.

[37] K. Kelly, Out of Control- The New Biology of Machines, Fourth State, London,

1994.

[38] R.A. Brooks and A. Flynn, “Fast, Cheap and Out of Control: A Robot Invasion of

the Solar System”, Journal of The British Interplanetary System, 42; 1989.

[39] R.A. Brooks, P. Maes, M.J. Mataric and G. More, “Lunar Base Construction

Robots”, IROS, IEEE International Workshop on Intelligence Robots & Systems,

1990.

[40] F. Crick and C. Koch, “The Problem of Consciousness”, Scientific American, Sep-

tember 1992, pp. 111-117.

[41] G.E. Hinton, D.C. Plaut and T. Shallice, “Simulating Brain Damage”, Scientific

American, October 1993, pp. 58-65.

[42] S. Zeki, “The Visual Image in Mind and Brain”, Scientific American, September

1992, pp.43-50.

[43] D.C. Dennett, Consciousness Explained, Penguin Books, London, 1991.

[44] P. Jackson, Introduction to Expert Systems, Addson-Wesley, Reading Mass., 1990.



 155

References

[45] L. Steels, “Mathematical analysis of behaviour systems”, Proceedings of the

From Perception to Action Conference, IEEE Computer Society Press, September

1994, pp. 88-95.

[46] R.A. Brooks, “A Robust Layered Control System for a Mobile Robot”, IEEE

Journal of Robotics and Automation, RA-2. April, pp. 14-23.

[47] C.L. Ferrell, “Multiple Sensors, Virtual Sensors and Robustness”, Mobile Robot-

ics Group/MIT Artificial Intelligence Lab.

[48] T.C. Hu and E.S. Kuh (Editors), VLSI Circuit Layout Theory and Design, IEEE

Press New York, 1985.

[49] S. Kirkpatrick, C.D. Gelatt Jr and M.P. Vecchi, “Optimization by Simulated

Annealing,” Science, V. 220, No. 4598, May 1983, pp. 671-680.

[50] M.N. Huhns and R.D. Acosta, “Argo: A System for Design by Analogy,” IEEE

Expert, Fall 1988, pp. 53-68.

[51] R.M. Adler, “Distributed Coordination Models for Client/Server Computing,”

IEEE Computer, Vol. 28, No. 4, April 1995, pp. 14-22.

[52] Network Interfaces Programmer’s Guide for Solaris 2.X, Sun Microsystems,

December 1992, CD-ROM version.

[53] I. Greif, “Desktop Agents in Group-Enabled Products,” Communications of the

ACM, Vol. 37, No. 7, July 1994, pp. 100-105.

[54] G.L. Steele Jr., Common Lisp: The Language, 2nd Edition, Digital Press, Bedford

Mass., 1990.

[55] EDIF Specification EDIF Electronic Design Interchange Format Version 0 9 5,

EDIF Steering Committee, November 1984.

[56] W. Clinger and J. Rees (Editors), “Revised4 Report on the Algorithmic Language

Scheme,” ACM Lisp Pointers, 4(3), 1991.

[57] E. Gallesio, STk Reference Manual, Version 2.1.6, Université de Nice - Sophia

Antipolis, Nice France, February 1995.



 156

References

[58] J.K. Ousterhout, “A X11 Toolkit Based on the Tcl Language,” USENIX Winter

Conference, January 1991, pp. 105-115.

[59] J.K. Ousterhout, Tcl and the Tk toolkit, Addson-Wesley, Reading Mass., 1994.

[60] T. Finin, J. Weber et al., Specification of the KQML Agent-Communication Lan-

guage, The DARPA Knowledge Sharing Initiative External Interfaces Working

Group, February 1994.

[61] M.W. Storm, ObjectBroker White Paper, Digital Equipment Corporation, Decem-

ber 1994.

[62] R. Orfali and D. Harley, “Client/Server with Distributed Objects”, BYTE Maga-

zine, April 1995, pg. 151-162.

[63] C.T. Walbridge, “Genetic Algorithms: What Computers Can Learn from Darwin”,

Technology Review, January 1989, pp. 47-53.

[64] J.H. Holland, Adaptation in Natural and Artificial Systems, Univ. of Michigan

Press, Ann Arbor, Mich. 1975.

[65] J.L. Ribeiro Filho, P.C. Treleaven and C. Alippi, “Genetic-Algorithm Program-

ming Environments”, Computer, vol. 27, no. 6, June 1994, pp. 28-43.

[66] C. Sechen and K.W. Lee, “An Improved Simulated Annealing Algorithm for

Row-based Placement”, Proc. Int. Conf. Computer-Aided Design, pp. 478-481,

Nov. 1987.

[67] E.F. Moore, “Shortest Path Through a Maze,” Annals of the Computation Labora-

tory of Havard University, Havard Univ. Press., Cambridge Mass., Vol. 30, 1959,

pp. 285-292.

[68] M.H. Arnold and W.S. Scott, “An Interactive Maze Router with Hints”, Proc. of

the 25th ACM/IEEE Design Automation Conference, 1988 IEEE, pp. 672-676.

[69] C.Y. Lee, “An Algorithm for Path Connection and Its Application,” IRE Trans.

Electron. Comput., pp. 346-365, Sept. 1961.



 157

References

[70] S.J. Leffler, M.K. Mekusik, M.J. Karels and J.S. Quarterman, The Design and

Implementation of the 4.3 BSD Unix Operating System, Addison-Wesley Publish-

ing Company, Reading Mass., 1989.

[71] G.T. LeBlond, S.R. Blust and W. Modes, Using Unix System V Release 3,

Osborne-McGraw Hill, Berkeley New York, 1990.

[72] D.A. Pucknell and K. Eshraghian, Basic VLSI Design, Third Edition, Prentice

Hall, London, 1994.

[73] N.H.E. West and K. Eshraghian, Principles of CMOS VLSI Design, Second Edi-

tion, Addison-Wesley Publishing Company, Reading, Massachusetts, 1993.

[74] C.Y. Hwang, Y-C. Hsieh, Y-L. Lin and Y-C. Hsu, “An Efficient Layout Style for

Two-Metal CMOS Leaf Cells and Its Automatic Synthesis”, IEEE Transactions

on CAD of Integrated Circuits and Systems, Vol. 12, No. 3, March 1993, pp. 410-

424.

[75] P.C. Nelson and A.A. Toptsis, “Unidiretional and Bidiretional Search Algo-

rithms,” IEEE Software, Vol. 9, No. 2, March 1992, pp. 77-83.

[76] D. Jefferson et al., “Evolution as a Theme in Artificial Life: The Genesys/Traker

System”, A-Life II, pp. 571-72.


