
Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 24

UML Core Conventions

♦ Rectangles are classes or instances

♦ Ovals are functions or use cases

♦ Instances are denoted with an underlined names
w myWatch:SimpleWatch

w joe:Firefighter

♦ Types are denoted with nonunderlined names
w SimpleWatch

w Firefighter

♦ Diagrams are graphs
w Nodes are entities
w Arcs are relationships between entities

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 25

UML Second Pass: Use Case Diagrams

Used during requirements elicitation to
represent external behavior

♦ Actors represent roles, that is, a type
of user of the system

♦ Use cases represent a sequence of
interaction for a type of functionality

♦ The use case model is the set of all
use cases. It is a complete description
of the functionality of the system and
its environment

Passenger

PurchaseTicket

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 26

Actors

♦ An actor models an external entity which
communicates with the system:
w User

w External system
w Physical environment

♦ An actor has a unique name and an optional
description.

♦ Examples:
w Passenger: A person in the train

w GPS satellite: Provides the system with GPS
coordinates

Passenger

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 27

Use Case

A use case represents a class of
functionality provided by the system as
an event flow.

A use case consists of:

♦ Unique name

♦ Participating actors

♦ Entry conditions

♦ Flow of events

♦ Exit conditions

♦ Special requirements

PurchaseTicket

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 28

Use Case Example

Name: Purchase ticket

Participating actor: Passenger

Entry condition:

♦ Passenger standing in front
of ticket distributor.

♦ Passenger has sufficient
money to purchase ticket.

Exit condition:

♦ Passenger has ticket.

Event flow:

1. Passenger selects the number
of zones to be traveled.

2. Distributor displays the amount
due.

3. Passenger inserts money, of
at least the amount due.

4. Distributor returns change.

5. Distributor issues ticket.

Anything missing?

Exceptional cases!

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 29

The <<extend>> Relationship

♦ <<extend>> relationships represent
exceptional or seldom invoked cases.

♦ The exceptional event flows are
factored out of the main event flow
for clarity.

♦ Use cases representing exceptional
flows can extend more than one use
case.

♦ The direction of a <<extend>>
relationship is to the extended use
case

Passenger

PurchaseTicket

TimeOut

<<extend>>

NoChange

<<extend>>OutOfOrder

<<extend>>

Cancel

<<extend>>

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 30

Passenger

PurchaseSingleTicket

PurchaseMultiCard

NoChange

<<extend>>

Cancel

<<extend>>

<<include>>

CollectMoney

<<include>>

The <<include>> Relationship

♦ An <<include>>
relationship represents
behavior that is factored out
of the use case.

♦ An <<include>> represents
behavior that is factored out
for reuse, not because it is an
exception.

♦ The direction of a
<<include>> relationship is
to the using use case (unlike
<<extend>> relationships).

