Class Diagrams

TariffSchedule Trip
zone:-Zone
Enumeration getZones() | * * price:Price

Price getPrice(Zone)

Class diagrams represent the structure of the system.
Class diagrams are used

¢ during requirements analysisto model problem domain concepts

¢ during system design to model subsystems and interfaces
¢ during object design to model classes.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 31

Classes

TariffSchedule

Table zonezZprice

Enumeration getZones()
Price getPrice(Zone)

TariffSchedule : — _
Zone2price Attributes Signature
getZones() —
etPrice
g O \\@perations | TariffSchedule

A class represent a concept.
A class encapsul ates state (attributes) and behavior

(operations).

Each attribute has atype.
Each operation has asignature.
The class name is the only mandatory information.

Bernd Bruegge & Allen Dutoit

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

32

| nstances

tariff 1974:TarifSchedule
zonezprice = {

{“1*, .203%,

{*27, .40},

{37, .60}}

An instance represents a phenomenon.

The name of an instance is underlined and can contain the class
of the instance.

The attributes are represented with their values.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 33

Actor vs. | nstances

- What is the difference between an actor and a class and an
Instance?

- Actor:

+ An entity outside the system to be modeled, interacting with the
system (“Pilot™)

- Class:

+ An abstraction modeling an entity in the problem domain, inside
the system to be modeled (“ Cockpit™)

- Object:

+ A gspecificinstance of a class (* Joe, theinspector™).

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Assoclations

TarifSchedule TripLeg
Enumeration getZones(Q) |* x| price
Price getPrice(Zone) Zone

Associ ations denote rel ationships between classes.

The multiplicity of an association end denotes how many
obj ects the source object can legitimately reference.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

35

1-to-1 and 1-to-Many Associations

Country

Has-capital

City

name:String

name:String

1-to-1 association

Polygon 1 * Point
x> Integer
drawQ) y:Integer

Bernd Bruegge & Allen Dutoit

1-to-many association

Object-Oriented Software Engineering: Conquering Complex and Changing Systems

36

Aggregation

An aggregation is a special case of association denoting a
“consists of” hierarchy.

The aggregate is the parent class, the components are the
children class.

Exhaust System

1 0..2

Muffler Tailpipe

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Composition

A solid diamond denote composition, a strong form of
aggregation where components cannot exist without the

aggregate.

TicketMachine

\ :
ZoneButton

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

Generalization

Button

/\

CancelButton ZoneButton

- Generalization relationships denote inheritance between
classes.

- The children classes inherit the attributes and operations of the
parent class.

- Generalization ssimplifies the model by eliminating redundancy.

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 39

From Problem Statement to Code

Problem Statement
A stock exchange lists many companies. Each company is
Identified by aticker symbol

Class Diagram

lists
StockExchange * * Company

tickerSymbol

Java Code
public class StockExchange {
public Vector m_Company = new Vector();
}s
public class Company {
public 1nt m_tickerSymbol;
public Vector m _StockExchange = new Vector();

}:

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems

