
Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 31

Class Diagrams

♦ Class diagrams represent the structure of the system.

♦ Class diagrams are used
w during requirements analysis to model problem domain concepts

w during system design to model subsystems and interfaces
w during object design to model classes.

Enumeration getZones()
Price getPrice(Zone)

TariffSchedule

* *

Trip
zone:Zone
price:Price

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 32

Classes

♦ A class represent a concept.
♦ A class encapsulates state (attributes) and behavior

(operations).
♦ Each attribute has a type.
♦ Each operation has a signature.
♦ The class name is the only mandatory information.

zone2price
getZones()
getPrice()

TariffSchedule

Table zone2price
Enumeration getZones()
Price getPrice(Zone)

TariffSchedule

Name

Attributes

Operations

Signature

TariffSchedule

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 33

Instances

♦ An instance represents a phenomenon.

♦ The name of an instance is underlined and can contain the class
of the instance.

♦ The attributes are represented with their values.

zone2price = {
{‘1’, .20},
{‘2’, .40},
{‘3’, .60}}

tariff_1974:TarifSchedule

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 34

Actor vs. Instances

♦ What is the difference between an actor and a class and an
instance?

♦ Actor:
w An entity outside the system to be modeled, interacting with the

system (“Pilot”)

♦ Class:
w An abstraction modeling an entity in the problem domain, inside

the system to be modeled (“Cockpit”)

♦ Object:
w A specific instance of a class (“Joe, the inspector”).

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 35

Associations

♦ Associations denote relationships between classes.

♦ The multiplicity of an association end denotes how many
objects the source object can legitimately reference.

Enumeration getZones()
Price getPrice(Zone)

TarifSchedule

* price
zone

TripLeg

*

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 36

1-to-1 and 1-to-Many Associations

1-to-1 association

1-to-many association

*

draw()

Polygon

x:Integer
y:Integer

Point1

Has-capital

name:String

Country

name:String

City
11

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 37

Aggregation

♦ An aggregation is a special case of association denoting a
“consists of” hierarchy.

♦ The aggregate is the parent class, the components are the
children class.

1

Exhaust System

Muffler Tailpipe

0..2

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 38

Composition

♦ A solid diamond denote composition, a strong form of
aggregation where components cannot exist without the
aggregate.

3

TicketMachine

ZoneButton

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 39

Generalization

♦ Generalization relationships denote inheritance between
classes.

♦ The children classes inherit the attributes and operations of the
parent class.

♦ Generalization simplifies the model by eliminating redundancy.

Button

ZoneButtonCancelButton

Bernd Bruegge & Allen Dutoit Object-Oriented Software Engineering: Conquering Complex and Changing Systems 40

From Problem Statement to Code

Problem Statement
A stock exchange lists many companies. Each company is
identified by a ticker symbol

Class Diagram

Java Code
public class StockExchange {
 public Vector m_Company = new Vector();
};
public class Company {
 public int m_tickerSymbol;
 public Vector m_StockExchange = new Vector();
};

*StockExchange

tickerSymbol

Company*
lists

