
 42

Lecture 4: Procedure Specifications

4.1. Introduction
In this lecture, we’ll look at the role played by specifications of methods. Specifications
are the linchpin of team work. It’s impossible to delegate responsibility for implementing
a method without a specification. The specification acts as a contract: the implementor is
responsible for meeting the contract, and a client that uses the method can rely on the
contract. In fact, we’ll see that like real legal contracts, specifications place demands on
both parties: when the specification has a precondition, the client has responsibilities
too.

Many of the nastiest bugs in programs arise because of misunderstandings about
behavior at interfaces. Although every programmer has specifications in mind, not all
programmers write them down. As a result, different programmers on a team have
different specifications in mind. When the program fails, it’s hard to determine where the
error is. Precise specifications in the code let you apportion blame (to code fragments,
not people!), and can spare you the agony of puzzling over where a fix should go.

Specifications are good for the client of a method because they spare her the task of
reading code. If you’re not convinced that reading a spec is easier than reading code,
take a look at some of the standard Java specs and compare them to the source code
that implements them. Vector, for example, in the package java.util, has a very simple
spec but its code is not at all simple.

Specifications are good for the implementor of a method because they give her freedom
to change the implementation without telling clients. Specifications can make code faster
too. Sometimes a weak specification makes it possible to do a much more efficient
implementation. In particular, a precondition may rule out certain states in which a
method might have been invoked that would have incurred an expensive check that is
no longer necessary.

This lecture is related to our discussion of decoupling and dependences in the last two
lectures. There, we were concerned only with whether a dependence existed. Here, we
are investigating the question of what form the dependence should take. By exposing
only the specification of a procedure, its clients are less dependent on it, and therefore
less likely to need changing when the procedure changes.

4.2. Behavioral Equivalence
Consider these two methods. Are they the same or different?

static int findA (int [] a, int val) {
 for (int i = 0; i < a.length; i++) {
 if (a[i] == val) return i;
 }
 return a.length;
 }
static int findB (int [] a, int val) {
 for (int i = a.length -1 ; i > 0; i--) {

 43

 if (a[i] == val) return i;
 }
 return -1;
 }

Of course the code is different, so in that sense they are different. Our question though
is whether one could substitute one implementation for the other. Not only do these
methods have different code; they actually have different behavior:
· when val is missing, findA returns the length and findB returns -1;
· when val appears twice, findA returns the lower index and findB returns the higher.

But when val occurs at exactly one index of the array, the two methods behave the
same. It may be that clients never rely on the behavior in the other cases. So the notion
of equivalence is in the eye of the beholder, that is, the client. In order to make it
possible to substitute one implementation for another, and to know when this is
acceptable, we need a specification that states exactly what the client depends on.

In this case, our specification might be
requires: val occurs in a
effects: returns result such that a[result] = val

4.3. Specification Structure
A specification of a method consists of several clauses:

· a precondition, indicated by the keyword requires;
· a postcondition, indicated by the keyword effects;
· a frame condition, indicated by the keyword modifies.

We’ll explain each of these in turn. For each, we’ll explain what the clause means, and
what a missing clause implies. Later, we’ll look at some convenient shorthands that
allow particular common idioms to be specified as special kinds of clause.

The precondition is an obligation on the client (ie, the caller of the method). It’s a
condition over the state in which the method is invoked. If the precondition does not
hold, the implementation of the method is free to do anything (including not terminating,
throwing an exception, returning arbitrary results, making arbitrary modifications, etc).

The postcondition is an obligation on the implementor of the method. If the precondition
holds for the invoking state, the method is obliged to obey the postcondition, by returning
appropriate values, throwing specified exceptions, modifying or not modifying objects,
and so on.

The frame condition is related to the postcondition. It allows more succinct
specifications. Without a frame condition, it would be necessary to describe how all the
reachable objects may or may not change. But usually only some small part of the state
is modifed. The frame condition identifies which objects may be modified. If we say
modifies x, this means that the object x, which is presumed to be mutable, may be
modified, but no other object may be. So in fact, the frame condition or modifies clause
as it is sometimes called is really an assertion about the objects that are not mentioned.
For the ones that are mentioned, a mutation is possible but not necessary; for the ones
that are not mentioned, a mutation may not occur.

Omitted clauses have particular interpretations. If you omit the precondition, it is given

 44

the default value true. That means that every invoking state satisfies it, so there is no
obligation on the caller. In this case, the method is said to be total. If the precondition is
not true, the method is said to be partial, since it only works on some states.

If you omit the frame condition, the default is modifies nothing. In other words, the
method makes no changes to any object.

Omitting the postcondition makes no sense and is never done.

4.4. Declarative Specification
Roughly speaking, there are two kinds of specifications. Operational specifications give
a series of steps that the method performs; pseudocode descriptions are operational.
Declarative specifications don’t give details of intermediate steps. Instead, they just give
properties of the final outcome, and how it’s related to the initial state.

Almost always, declarative specifications are preferable. They’re usually shorter, easier
to understand, and most importantly, they don’t expose implementation details
inadvertently that a client may rely on (and then find no longer hold when the
implementation is changed). For example, if we want to allow either implementation of
find, we would not want to say in the spec that the method ‘goes down the array until it
finds val’, since aside from being rather vague, this spec suggests that the search
proceeds from lower to higher indices and that the lowest will be returned, which
perhaps the specifier did not intend.

Here are some example of declarative specification. The class StringBuffer provides
objects that are like String objects but mutable. The methods of StringBuffer modify the
object rather than creating new ones: they are mutators, whereas String’s methods are
producers. The reverse method reverses a string. Here’s how it’s specified in the Java
API:

public StringBuffer reverse()
// modifies: this
// effects: Let n be the length of the old character sequence, the one contained in the
string buffer
// just prior to execution of the reverse method. Then the character at index k in
the new
// character sequence is equal to the character at index n-k-1 in the old character
sequence.

Note that the postcondition gives no hint of how the reversing is done; it simply gives a
property that relates the character sequence before and after. (We’ve omitted part of the
specification, by the way: the return value is simply the string buffer object itself.) A bit
more formally, we might write

effects:
 length (this.seq) = length (this.seq’)
 all k: 0..length(this.seq)-1 | this.seq’[k] = this.seq[length(this.seq)-k-1]

Here I’ve used the notation this.seq’ to mean the value of the character sequence in this
object after execution. The course text uses the keyword post as a subscript for the
same purpose. There’s no precondition, so the method must work when the string buffer
is empty too; in this case, it will actually leave the buffer unchanged.

Another example, this time from String. The startsWith method tests whether a string
starts with a particular substring.

 45

public boolean startsWith(String prefix)
// Tests if this string starts with the specified prefix.
// effects:
// if (prefix = null) throws NullPointerException
// else returns true iff exists a sequence s such that (prefix.seq ^ s = this.seq)

I’ve assumed that String objects, like StringBuffer objects, have a specification field that
models the sequence of characters. The caret is the concatenation operator, so the
postcondition says that the method returns true if there is some suffix which when
concatenated to the argument gives the character sequence of the string. The absence
of a modifies clause indicates that no object is mutated. Since String is an immutable
type, none of its methods will have modifies clauses.

Another example from String:
public String substring(int i)
// effects:
// if i < 0 or i > length (this.seq) throws IndexOutOfBoundsException
// else returns r such that
// some sequence s | length(s) = i && s ^ r.seq = this.seq

This specification shows how a rather mathematical postcondition can sometimes be
easier to understand than an informal description. Rather than talking about whether i is
the starting index, whether it comes just before the substring returned, etc, we simply
decompose the string into a prefix of length i and the returned string.

Our final example shows how a declarative specification can express what is often called
non- determinism, but is better called ‘under-determinedness’. By not giving enough
details to allow the client to infer the behavior in all cases, the specification makes
implementation easier. The term non-determinism suggests that the implementation
should exhibit all possible behaviors that satisfy the specification, which is not the case.

There is a class BigInteger in the package java.math whose objects are integers of
unlimited size. The class has a method similar to this:

public boolean maybePrime ()
// effects: if this BigInteger is composite, returns false

If this method returns false, the client knows the integer is not prime. But if it returns true,
the integer may be prime or composite. So long as the method returns false a
reasonable proportion of the time, it’s useful. In fact, as the Java API states: the method
takes an argument that is a measure of the uncertainty that the caller is willing to
tolerate. The execution time of this method is proportional to the value of this parameter.’
We won’t worry about probabilistic issues in this course; we mention this spec simply to
note that it does not determine the outcome, and is still useful to clients.

Here is an example of a truly underdetermined specification. In the Observer pattern, a
set of obejects known as ‘observers’ are informed of changes to an object known as a
‘subject’. The subject will belong to a class that subclasses java.util.Observable. In the
specification of Observable, there is a specification field observers that holds the set of
observer objects. This class provides methods to add an observer

public void addObserver(Observer o)
// modifies: this
// effects: this.observers’ = this.observers + {o}

(using + to mean set union), and to notify the observers of a change in state:

 46

public void notifyObservers()
// modifies the objects in this.observers
// effects: calls o.notify on each observer o in this.observers

The specification of notify does not indicate in what order the observers are notified.
What order is chosen may have an effect on overall program behavior, but having
chosen to model the observers as a set, there is no way to specify an order anyway.

4.5. Exceptions and Preconditions
An obvious design issue is whether to use a precondition, and if so, whether it should be
checked. It is crucial to understand that a precondition does not require that checking be
performed. On the contrary, the most common use of preconditions is to demand a
property precisely because it would be hard or expensive to check.

As mentioned above, a non-trivial precondition renders the method partial. This
inconveniences clients, because they have to ensure that they don’t call the method in a
bad state (that violates the precondition); if they do, there is no predictable way to
recover from the error. So users of methods don’t like preconditions, and for this reason
the methods of a library will usually be total. That’s why the Java API classes, for
example, invariably throw exceptions when arguments are inappropriate. It makes the
programs in which they are used more robust.

Sometimes though, a precondition allows you to write more efficient code and saves
trouble. For example, in an implementation of a binary tree, you might have a private
method that balances the tree. Should it handle the case in which the ordering invariant
of the tree does not hold? Obviously not, since that would be expensive to check. Inside
the class that implements the tree, it’s reasonable to assume that the invariant holds.
We’ll generalize this notion when we talk about representation invariants in a
forthcoming lecture.

The decision of whether to use a precondition is an engineering judgment. The key
factors are the cost of the check (in writing and executing code), and the scope of the
method. If it’s only called locally in a class, the precondition can be discharged by
carefully checking all the sites that call the method. But if the method is public, and used
by other developers, it woul d be less wise to use a precondition.

Sometimes, it’s not feasible to check a condition without making a method unacceptably
slow, and a precondition is often necessary in this case. In the Java standard library, for
example, the binary search methods of the Arrays class require that the array given be
sorted. To check that the array is sorted would defeat the entire purpose of the binary
search: to obtain a result in logarithmic and not linear time.

Even if you decide to use a precondition, it may be possible to insert useful checks that
will detect, at least sometimes, that the precondition was violated. These are the runtime
assertions that we discussed in our lecture on exceptions. Often you won’t check the
precondition explicitly at the start, but you’ll discover the error during computation. For
example, in balancing the binary tree, you might check when you visit a node that its
children are appropriately ordered.

If a precondition is found to be violated, you should throw an unchecked exception, since
the client will not be expected to handle it. The throwing of the exception will not be
mentioned in the specification, although it can appear in implementation notes below it.

 47

4.6. Shorthands
There are some convenient shorthands that make it easier to write specifications. When
a method does not modify anything, we specify the return value in a returns clause. If an
exception is thrown, the condition and the exception are given in a throws clause. For
example, instead of

public boolean startsWith(String prefix)
// effects:
// if (prefix = null) throws NullPointerException
// else returns true iff exists a sequence s such that (prefix.seq ^ s = this.seq)

we can write
public boolean startsWith(String prefix)
// throws: NullPointerException if (prefix = null)
// returns: true iff exists a sequence s such that (prefix.seq ^ s = this.seq)

The use of these shorthands implies that no modifications occur. There is an implicit
ordering in which conditions are evaluated: any throws clauses are considered in the
order in which they appear, and then returns clauses. This allows us to omit the else part
of the if-then-else statement.

Our 6170 JavaDoc html generator produces specifications formatted in the Java API
style. It allows the clauses that we have discussed here, and which have been standard
in the specification community for several decades, in addition to the shorthand clauses.
We won’t use the JavaDoc parameters clause: it is subsumed by the postcondition, and
is often cumbersome to write.

4.7. Specification Ordering
Suppose you want to substitute one method for another. How do you compare the
specifications?

A specification A is at least as strong as a specification B if
· A’s precondition is no stronger than B’s
· A’s postcondition is no weaker than B’s, for the states that satisfy B’s precondition.

These two rules embody several ideas. They tell you that you can always weaken the
precondition; placing fewer demands on a client will never upset him. You can always
strengthen the postcondition, which means making more promises. For example, our
method maybePrime can be replaced in any context by a method isPrime that returns
true if and only if the integer is prime. And where the precondition is false, you can do
whatever you like. If the postcondition happens to specify the outcome for a state that
violates the precondition, you can ignore it, since that outcome is not guaranteed
anyway.

These relationships between specifications will be important when we look at the
conditions under which subclassing works correctly (in our lecture on subtyping and
subclassing).

 48

4.8. Judging Specifications
What makes a good method? Designing a method means primarily writing a
specification. There are no infallible rules, but there are some useful guidelines:
· The specification should be coherent: it shouldn’t have lots of different cases. Deeply

nested if- statements are a sign of trouble, as are boolean flags presented as
arguments.

· The results of a call should be informative. Java’s HashMap class has a put method
that takes a key and a value and returns a previous value if that key was already
mapped, or null otherwise. HashMaps allow null references to be stored, so a null
result is hard to interpret.

· The specification should be strong enough. There’s no point throwing a checked
exception for a bad argument but allowing arbitrary mutations, because a client won’t
be able to determine what mutations have actually been made.

· The specification should be weak enough. A method that takes a URL and returns a
network connection clearly cannot promise always to succeed.

4.9. Summary
A specification acts as a crucial firewall between the implementor of a procedure and its
client. It makes separate development possible: the client is free to write code that uses
the procedure without seeing its source code, and the implementor is free to write the
code that implements the procedure without knowing how it will be used. Declarative
specifications are the most useful in practice. Preconditions make life hard for the client,
but, applied judiciously, are a vital tool in the software designer’s repertoire.

