
Lecture 17: Case Study: JUnit

The JUnit testing framework which you’ve been using to test your own code in 6.170 is
worth studying in its own right. It was developed by Kent Beck and Erich Gamma.
Beck is an exponent of patterns and Extreme Programming (XP); Gamma is one of the
authors of the celebrated design patterns book. JUnit is open source, so you can study
the source code yourself. There’s also a nice explanatory article in the JUnit distribu-
tion, entitled ‘A Cook’s Tour’, which explains the design of JUnit in terms of design pat-
terns, and from which much of the material in this lecture is drawn.

JUnit has been a great success. Martin Fowler, an insightful and pragmatic proponent
of patterns and XP (and also author of a wonderful book on object models called
Analysis Patterns), says about JUnit:

Never in the field of software development was so much owed by so many to so few
lines of code.

JUnit’s ease of use is no doubt in large part responsible for its popularity. You might
think that. since it doesn’t do very much – it just runs a bunch of tests and reports their
results – JUnit should be very simple. In fact, the code is rather complicated. The main
reason for this is that it has been designed as a framework, to be extended in many
unanticipated ways, and so it’s full of rather complex patterns and indirections
designed to allow an implementer to override some parts of the framework while pre-
serving other parts.

Another complicating influence is a desire to make tests easy to write. There’s a clever
hack involving reflection that turns methods of a class into individual instances of the
type Test. Here’s another example of a hack that seems unconscionable at first. The
abstract class TestCase inherits from the class Assert, which contains a bunch of static
assertion methods, simply to allow a call to the static assert method to be written as
just assert (…), rather than Assert.assert (…). In no sense is TestCase a subtype of Assert,
of course, so this really makes no sense. But it does allow code within TestCase to be
written more succinctly. And since all the test cases the user writes are methods of the
TestCase class, this is actually pretty significant.

The use of patterns is skillful and well motivated. The key patterns we’ll look at are:
Template Method, the key pattern of framework programming; Command, Composite,
and Observer. All these patterns are explained at length in Gamma et al, and, with the

105

exception of Command, have been covered already in this course.

My personal opinion is that JUnit, the jewel in the crown of XP, itself belies the funda-
mental message of the movement – that code alone is enough. It’s a perfect example of
a program that is almost incomprehensible without some abstract, global representa-
tions of the design explaining how the parts fit together. It doesn’t help that the code is
pretty lean on comments – and where are there comments they tend to dwell on which
Swiss mountain the developer was sitting on when the code was written. Perhaps high
altitude and thin air explains the coding style.The ‘Cook’s Tour’ is essential; without it,
it would take hours to grasp the subtleties of what’s going on. And it would be helpful
to have even more design representations. The ‘Cook’s Tour’ presents a simplified view,
and I had to construct for myself an object model explaining, for example, how the lis-
teners work.

If you’re one of those students who’s skeptical about design representations, and who
still thinks that code is all that matters, you should stop reading here, and curl up in a
chair to spend an evening with JUnit’s source code. Who knows, it may change your
mind…

You can download the source code and documentation for JUnit from

http://www.junit.org/.

There’s an open source repository at

http://sourceforge.net/projects/junit/

where can view (and contribute) bug reports.

17.1 Overview
JUnit has several packages: framework for the basic framework, runner for some
abstract classes for running tests, textui and swingui for user interfaces, and extensions
for some useful additions to the framework. We’ll focus on the framework package.

The diagrams show the object model and module dependences. You may want to fol-
low along with these diagrams as you read our discussion. Both of these include only
the framework modules, although I’ve included TestRunner in the object model to
show how the listeners are connected; it’s relations, suite and result are local variables
of its doRun method.

Note that the module dependency diagram is almost fully connected. This is not sur-
prising for a framework; the modules are not intended to be used independently.

106

107

TestCase

Test

TestSuite

TestResult

TestFailureTestListener

Assertion
FailedError

TestRunner TestResult

TestCase TestSuite

Test
fTests

TestFailure

fFailures, fErrors

fThrownException

Assertion
FailedError

Throwable

result

suite
String fName

fFailedTest

fListenersTestListener

!

!

!

!

17.2 Command
The command pattern encapsulates a function as an object. It’s how you implement a
closure – remember that from 6.001? – in an object-oriented language. The command
class typically has a single method with a name like do, run or perform. An instance of
a subclass is created that overrides this method, and usually also encapsulates some
state (in 6.001 lingo, the environment of the closure). The command can then be
passed around as an object, and ‘executed’ by calling the method.

In JUnit, test cases are represented as command objects that implement the interface
Test:

public interface Test {
public void run();
}

Actual test cases are instances of a subclass of a concrete class TestCase:

public abstract class TestCase implements Test {
private String fName;
public TestCase(String name) {

fName= name;
}

public void run() {
…
}

}

In fact, the actual code isn’t quite like this, but starting from this simplified version will
allow us to explain the basic patterns more easily. Note that the constructor associates
a name with the test case, which will be useful when reporting results. In fact, all the
classes that implement Test have this property, so it might have been good to add a
method

public String getName ()

to the Test interface. Note also that the authors of JUnit use the convention that iden-
tifiers that begin with a lowercase f are fields of a class (that is, instance variables).

We’ll see a more elaborate example of the command pattern when we study the Tagger
program next week.

108

17.3 Template Method
One might make run an abstract method, thus requiring all subclasses to override it.
But most test cases have three phases: setting up the context, performing the test, then
tearing down the context. We can factor out this common structure by making run a
template method:

public void run() {
setUp();
runTest();
tearDown();

}

The default implementations of the hook methods do nothing:

protected void runTest() { }
protected void setUp() { }
protected void tearDown() { }

They are declared as protected so that they are accessible from subclasses (and can
thus be overridden) but not accessible from outside the package. It would be nice to be
able to prevent access except from subclasses, but Java doesn’t offer such a mode. A
subclass can selectively override these methods; if it overrides only runTest, for exam-
ple, there will be no special setUp or tearDown behaviour.

We saw this same pattern in the last lecture in the skeletal implementations of the Java
collections API. It is sometimes referred to in a rather corny way as the Hollywood
Principle. A traditional API provides methods that get called by the client; a frame-
work, in contrast, makes calls to the methods of its client: ‘don’t call us, we’ll call you’.
Pervasive use of templates is the essence of framework programming. It’s very power-
ful, but also easy to write programs that are completely incomprehensible, since
method implementations make calls at multiple levels in the inheritance hierarchy.

It can be difficult to know what’s expected of a subclass in a framework. An analog of
pre- and post-conditions hasn’t been developed, and the state of the art is rather crude.
You usually have to read the source code of the framework to use it effectively. The Java
collections API does better than most frameworks, by including in the specifications
of template methods some careful descriptions of how they are implemented. This is
of course anathema to the idea of abstract specification, but it’s unavoidable in the con-
text of a framework.

109

17.4 Composite
As we discussed in Lecture 11, test cases are grouped into test suites. But what you do
with a test suite is essentially the same as what you do with a test: you run it, and you
report the result. This suggests using the Composite pattern, in which a composite
object shares an interface with its elementary components.

Here, the interface is Test, the composite is TestSuite, and the elementary components
are members of TestCase. TestSuite is a concrete class that implements Test, but whose
run method, unlike the run method of TestCase, calls the run method of each test case
that the suite contains. Instances of TestCase are added to a TestSuite instance with the
method addTest; there’s also a constructor that creates a TestSuite with a whole bunch
of test cases, as we’ll see later.

The example of Composite in the Gamma book has the interface include all the opera-
tions of the composite. Following this approach, Test should include methods like
addTest, which apply only to TestSuite objects. The implementation section of the pat-
tern description explains that there is a tradeoff between transparency – making the
composite and leaf objects look the same – and safety – preventing inappropriate oper-
ations from being called. In terms of our discussion in the subtyping lecture, the ques-
tion is whether the interface should be a true supertype. In my opinion it should be,
since the benefits of safety outweigh those of transparency, and, moreover, the inclu-
sion of composite operations in the interface is confusing. JUnit follows this approach,
and does not include addTest in the interface Test.

17.5 Collecting Parameter
The run method of Test actually has this signature:

public void run(TestResult result);

It takes a single argument that is mutated to record the result of running the test. Beck
calls this a ‘collecting parameter’ and views it as a design pattern in its own right.

There are two ways in which a test can fail. Either it produces the wrong result (which
may include not throwing an expected exception), or it throws an unexpected excep-
tion (such as IndexOutOfBoundsException). JUnit calls the former ‘failures’ and the lat-
ter ‘errors’. An instance of TestResult contains a sequence of failures and a sequence of
errors, each failure or error being represented as an instance of the class TestFailure,
which contains a reference to a Test and a reference to the exception object generated
by the failure or error. (Failures always produce exceptions, since even when an unex-
pected result is produced without an exception, the assert method used in the test con-

110

verts the mismatch into an exception).

The run method in TestSuite is essentially unchanged; it just passes the TestResult
when invoking the run method of each of its tets. The run method in TestCase looks
something like this:

public void run (TestResult result) {
setUp ();
try {

runTest ();
}

catch
(AssertionFailedError e) {

result.addFailure (test, e);
}

(Throwable e) {
result.addError (test, e);
}

tearDown ();
}

In fact, the control flow of the template method run is more complicated than we have
suggested. Here are some pseudocode fragments showing what happens. It ignores the
setUp and tearDown activities, and considers a use of TestSuite within a textual user
interface:

junit.textui.TestRunner.doRun (TestSuite suite) {
result = new TestResult ();
result.addListener (this);
suite.run (result);
print (result);
}

junit.framework.TestSuite.run (TestResult result) {
forall test: suite.tests

test.run (result);
}

junit.framework.TestCase.run (TestResult result) {
result.run (this);
}

111

junit.framework.TestResult.run (Test test) {
try {

test.runBare ();
}

catch (AssertionFailedError e) {
addFailure (test, e);
}

catch (Throwable e) {
addError (test, e);
}

}

junit.framework.TestCase.runBare (TestResult result) {
setUp();
try {

runTest();
}

finally {
tearDown();
}

}

TestRunner is a user interface class that calls the framework and displays the results.
There’s a GUI version junit.swingui and a simple console version junit.textui, which
we’ve shown an excerpt from here. We’ll come to the listener later; ignore it for now.

Here’s how it works. The TestRunner object creates a new TestResult to hold the results
of the test; it runs the suite, and prints the results. The run method of TestSuite calls
the run method of each of its constituent tests; these may themselves be TestSuite
objects, so the method may be called recursively. This is a nice illustration of the sim-
plicity that Composite brings. Eventually, since there is an invariant that a TestSuite
cannot contain itself – not actually specified, and not enforced by the code of TestSuite
either – the method will bottom out by calling the run methods of objects of type
TestCase.

The run method of TestCase now has the receiver TestCase object swap places with the
TestResult object, and calls the run method of TestResult with the TestCase as an argu-
ment. (Why?). The run method of TestResult then calls the runBare method of
TestCase, which is the actual template method that executes the test. If the test fails, it

112

throws an exception, which is caught by the run method in TestResult, which then
packages the test and exception as a failure or error of the TestResult.

17.6 Observer

For an interactive user interface, we’d like to show the results of the test as it happens
incrementally. To achieve this, JUnit uses the Observer pattern.

The TestRunner class implements an interface TestListener which has methods
addFailure and addError of its own. It plays the role of Observer. The class TestResult
plays the role of Subject; it provides a method

public void addListener(TestListener listener)

which adds an observer. When the addFailure method of TestResult is called, in addi-
tion to updating its list of failures, it calls the addFailure method on each of its
observers:

public synchronized void addFailure(Test test, AssertionFailedError e) {
fFailures.addElement(new TestFailure(test, e));

for (Enumeration e= cloneListeners().elements(); e.hasMoreElements();) {
((TestListener)e.nextElement()).addFailure(test, e);
}

}

In the textual user interface, the addFailure method of TestRunner simply prints a
character F to the screen. In the graphical user interface, it adds the failure to a list dis-
play and changes the colour of the progress bar to red.

17.7 Reflection Hacks
Recall that a test case is an instance of the class TestCase. To create a test suite in plain
old Java, a user would have to create a fresh subclass of TestCase for each test case, and
instantiate it. An elegant way to do this is to use anonymous inner classes, creating the
test case as an instance of a subclass that has no name. But it’s still tedious, so JUnit
provides a clever hack.

The user provides a class for each test suite – called MySuite say – that is a subclass of
TestCase, and which contains many test methods, each having a name beginning with
the string ‘test’. These are taken to be individual test cases.

public class MySuite extends TestCase {

113

void testFoo () {
int x = MyClass.add (1, 2);
assertEquals (x, 3);
}

void testBar () {
…
}

}

The class object MySuite itself is passed to the TestSuite constructor. Using reflection,
the code in TestSuite instantiates MySuite for each of its methods beginning with ‘test’,
passing the name of the method as an argument to the constructor. As a result, for
each test method, a fresh TestCase object is created, with its name bound to the name
of the test method. The runTest method of TestCase calls, again using reflection, the
method whose name matches the name of the TestCase object itself, roughly like this:

void runTest () {
Method m = getMethod (fName);
m.invoke ();
}

This scheme is obscure, and dangerous, and not the kind of thing you should emulate
in your code. Here it’s justifiable, because it’s limited to a small part of the JUnit code,
and it brings a huge advantage to the user of JUnit.

17.8 Questions for Self-Study
These questions arose when I constructed the object model for JUnit. They don’t all
have clear answers.
· Why are listeners attached to TestResult? Isn’t TestResult already a kind of listener

itself?
· Can a TestSuite contain no tests? Can it contain itself?
· Are Test names unique?
· Does the fFailedTest field of TestFailure always point to a TestCase?

114

